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1. Introduction 

 
Ferritic martensitic steels are promising due to their 

low swelling rate under the fast neutron irradiation. 

However, in the case of Fe-Cr steels, precipitation of Cr 

rich phase (α΄ phase) near 475°C is still pointed out as a 

weak point in the view point of structural integrity. [1][2] 

therefore, understanding the spinodal decomposition 

behavior of the Fe-Cr system under the fast neutron 

irradiation is important topic in studying the integrity of 

structural materials.  

Herein, we analyze the spinodal decomposition 

behavior under the fast neutron irradiation of the Fe-Cr 

system using a graphics processing unit(GPU)-

accelerated phase-field method. Since high energy 

particles produce a point defect, we quantify the 

microstructure evolution behavior of the Fe-Cr system 

under the fast neutron irradiation. 

In addition, we consider the different computational 

technique. Since the quantitative prediction of the real 

material system is highly computationally expensive, we 

have implement a parallel computing scheme based on 

the compute unified device architecture (CUDA) to 

improve computational efficiency [3], comparing it with 

parallelized code using CUDA when solving the Cahn-

Hilliard diffusion equation [4] using a semi-implicit 

spectral method [5]. 

Although CUDA has previously been applied to the 

phase-field method, it was used to create an explicit 

solver [6], [7]. Herein, we instead use it to implement a 

semi-implicit spectral method and compare the 

performance of OpenMP- and CUDA-accelerated code. 

Results will help to guide any researchers aiming to solve 

the Cahn-Hilliard equation using fast Fourier transform. 

 

2. CALPHAD-based phase-field methods 

 

2.1 Semi-implicit Fourier spectral method 

 

We simulate the evolution of the Cr concentration 

field by solving the following Cahn-Hilliard equation [8]: 

 
𝜕𝑐(𝑟,𝑡)

𝜕𝑡
= 𝑉𝑚

2∇ ∙ [𝑀(𝑟, 𝑡) ∙ ∇ (
𝛿𝐹(𝑟,𝑡)

𝛿𝑐
)]                              (1) 

F(r, t) = ∫ {
1

𝑉𝑚
[𝑓(𝑐) +

1

2
𝜅(∇𝑐)2]}𝑑𝑉

𝑉
                              (2) 

 

where c is the Cr concentration, κ is the gradient 

energy coefficient, F(r, t)  and f(c)  are the system’s 

molar free energy and molar chemical free energy, 

respectively. f(c) is discussed in the following section. 

The molar free energy F(r, t)  in Eq.(1) is given by 

Eq. (2), The gradient coefficient κ is given by  

 

κ =  
1

6
𝑟0

2𝐿𝐹𝑒𝐶𝑟                                                                 (4) 

 

where 𝑟0  is the lattice parameter and 𝐿𝐹𝑒𝐶𝑟  is the 

regular solution interaction parameter.  

The mobility M in the Cahn-Hilliard-Cook equation is 

assumed to be independent of the concentration field 

Therefore, rearranged Eq. (1) as  

 
𝜕𝑐(𝑟,𝑡)

𝜕𝑡
= ∇2[(

𝛿𝑓(𝐶)

𝛿c
) − 𝜅∇2c(r, t)]                                     (5) 

𝜕𝑐̃(𝑘,𝑡)

𝜕𝑡
= −𝑘2 (

𝛿𝐹(𝑟,𝑡)

𝛿𝑐
)

𝑘
− 𝜅𝑘4�̃�(k, t)                             (6) 

 

where k = (𝑘1, 𝑘2)  is the reciprocal vector in the 

Fourier space of magnitude k = √𝑘1
2+𝑘2

2  and �̃�(𝑘, 𝑡) 

and (
𝛿𝐹(𝑟,𝑡)

𝛿𝑐
)

𝑘
are the Fourier transforms of c(r, t)  and 

(
𝛿𝑓(𝐶)

𝛿c
) respectively. Then, we applied an explicit Euler 

Fourier spectral treatment to this equation, yielding 

 
𝜕𝑐̃𝑛+1(𝑘,𝑡)−𝑐̃𝑛(𝑘,𝑡)

∆𝑡
= −𝑘2 (

𝛿𝐹(𝑟,𝑡)

𝛿𝑐
)

𝑘

𝑛

− 𝜅𝑘4�̃�(k, t)           (7) 

so 

 

�̃�𝑛+1(𝑘, 𝑡) =
𝑐̃𝑛(𝑘,𝑡)−∆t𝑘2(

𝛿𝐹(𝑟,𝑡)

𝛿𝑐
)

𝑘

𝑛

1+∆t𝜅𝑘4                                             (8) 

 

2.2 Modified CALPHAD-type free energy 

 

The molar chemical free energy f(c) in Eq. (2) is given 

by[주석] 

 

f(c) = (1 − 𝑐)𝐺𝐹𝑒
0 + c𝐺𝐶𝑟

0 + 𝐿𝐹𝑒𝐶𝑟𝑐(1 − 𝑐)
+ 𝑅𝑇[𝑐𝑙𝑛𝑐 + (1 − 𝑐) ln(1 − 𝑐)]
+ 𝐺𝑚(J/mol)                                   (9) 

 

where 𝐺𝐹𝑒
0  and  𝐺𝐶𝑟

0   are the molar Gibbs free energies 

for pure elemental Fe and Cr, respectively,  𝐿𝐹𝑒𝐶𝑟  is the 

interaction parameter between Fe and Cr, R (= 8.314J/
mol ∙ K) is the gas constant, T is the system’s absolute 

temperature, which is 563 K herein, and 𝐺𝑚 is the molar 

Gibbs free energy of the magnetic ordering effect. These 

were calculated as follows: 

𝐺𝐹𝑜
0 = +1225.7 + 124.134 × T − 23.5143 × T × lnT

− 0.00439752 × 𝑇2 − 5.89269
× 10−8 × 𝑇3 + 77358.5 × 𝑇−1 
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𝐺𝐶𝑟

0 = −8856.94 + 157.48 × T − 26.908 × T × lnT
+ 0.00189435 × 𝑇2 − 1.47721
× 10−6 × 𝑇3 + 139250 × 𝑇−1 

𝐿𝐹𝑒𝐶𝑟 = +20500 − 9.68𝑇 

𝐺𝑚 = 𝑅𝑇𝑙𝑛(𝛽 + 1)λ(τ), (J/mol) 

 

Where 𝛽 is the atomic magnetic moment, calculated in 

terms the Bohr magneton as  

 

𝛽 = 2.22(1 − 𝑐) − 0.008𝑐 − 0.85𝑐(1 − 𝑐). 

The function λ(τ)  is expressed as the following 

polynomial: 

λ(τ) = −0.90530 τ−1 + 1.0 − 0.153τ3 − 6.8

× 10−3τ9 − 1.53 × 10−3τ15 (τ > 1) 

          = −0.06417 τ−5 − 2.037 × 10−3τ−15 − 4.278
× 10−4τ−25                               (τ < 1) 

Where τ = 𝑇/𝑇𝑐  is critical magnetic ordering 

temperature given by 

𝑇𝑐 = 1043(1 − 𝑐) − 311.5𝑐 + 𝑐(1 − 𝑐)[1650
+ 550(2𝑐 − 1)](𝑖𝑛 𝐾) 

 

Eq. (2) includes a magnetic ordering contribution to the 

free energy. Some previous studies have neglected 

magnetic ordering effects. However, as shown in Fig. 1, 

the Fe-Cr system’s free energy at 563 K varies 

substantially depending on whether or not magnetic 

ordering effects are included. 

 

 

Fig 1: Free energy curve for the Fe-Cr at 563 K with 

considering magnetic ordering effects. The equilibrium Cr 

concentration are 𝐶𝐶𝑟 = 0.05 and 𝐶𝐶𝑟 = 0.98 

To increase the computational efficiency, we used 

dimensionless values herein. Specifically, our 

simulations used the normalized values 𝑟∗ = 𝑟/𝑙 , ∇∗=
𝜕/𝜕(𝑟/𝑙) ,  𝑡∗ = 𝑡𝐷/𝑙2 ,  𝑀∗ = 𝑉𝑚𝑅𝑇∗𝑀/𝐷 , 𝑓∗(𝑐) =
𝑓(𝑐)/(3𝑅𝑇∗), and 𝜅∗ = 𝜅/𝑅𝑇∗𝑙2 with 𝐷 = 10−24𝑚2/𝑠, 

𝑇∗ = 900𝐾, and l = 2.856Å, where is 𝑎0  value in Eq. 

(6). We used  𝜅∗ = 2.4901 when considering magnetic 

ordering effects [9]. 

2.3 Performance benchmark 

 

To improve the computational efficiency, we apply 

parallelization technique. In this study, CUDA was used 

due to CUDA is most effective when solving the Cahn-

Hilliard equation [9]. A semi-implicit Fourier spectral 

method, as described in the previous section, was 

implemented by utilizing cuFFT for the CUDA code. For 

this benchmark, we conducted 2D spinodal 

decomposition simulations that describe the 

microstructure evolution behavior of the Fe-Cr system 

under the fast neutron irradiation. We measured the time 

taken to calculate 100,000 time steps using the Linux 

time command, which gives the real elapsed time.  

 

 

Fig 2: Time consumption for the microstructural 

evolution simulation with serial (i9-9900K 3.6 GHz CPU) 

and CUDA (1060, 2080ti and Tesla V100) 

We compared the efficiencies of the CUDA-based 

code on the same or a comparable computer, and the 

results obtained are shown in Fig. 2. We conducted these 

comparisons for seven different numbers of dimensions, 

namely 128, 256, 512, 1024, and 2048. Here, a 

dimensionality of 128 (say) means that the system cell 

size was 128∆x ×  128∆y. 

 

 

Fig 3: CUDA code efficiency compared to serial code 

As shown in Fig. 2 the computational cost of the 

CUDA code better than serial code. Also, Fig 3, as the 

system size increases, the efficiency of the CUDA code 

increases up to 103 times. However, CUDA code is 2% 

slow when system size is 64∆x ×  64∆y.  

 

 

2.4 Simulation results and analysis 
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To investigate the microstructure evolution of the Fe-

Cr on phase separation behavior, we performed four sets 

of simulations shown in Table 1. 

 

Table I: Four sets of simulations for various alloy 

 Alloy 
Fraction of 

α΄ phase 

Number of 

precipitate  

Case 1 9Cr 0.060 112 

Case 2 12Cr 0.092 221 

Case 3 15Cr 0.122 759 

Case 4 18Cr 0.154 949 

 

  We set a 1000 initial number of precipitate and each 

case has different initial Cr concentration.  

 

 
Case 1 

 
Case 2 

 
Case 3 

 
Case 4 

Fig. 5: Plots of the Cr Concentration at 1.0 ×  106time 

step for cases 1-4 in Table 1. The Cr concentration is 1 

when yellow area, the black area is 0 Cr concentration  

 

 
Fig. 6: Plots of the number density of α΄ precipitates for 

cases 1-4 in Table 1 

 

The smaller the initial Cr composition, less the number 

of precipitates at 1.0 ×  106time step. Also, the number 

of α΄ precipitates in case 1 rapidly decrease when early 

stage.  

 

Fig. 7: Plots of the average area of precipitates. 

As shown in Fig.7,in the early stages of microstructure 

evolution in Case 1, the size of precipitates grows rapidly. 

Also, the smaller the initial Cr composition, the average 

area of precipitate grows bigger than large Cr 

concentration. 

 

3. Conclusions and future work 

 

Herein, we simulated a set of phase-field models to 

investigate the phase separation behavior in the Fe-Cr 

binary alloy system. When the initial composition was 

between 9Cr and 18Cr, the smaller the initial Cr 

concentration, the smaller the number of precipitates, 

and the larger the size of precipitate. So, we analysis 

microstructure evolution behavior of Fe-Cr system under 

the fast neutron irradiation. 

However, in this study, we did not consider the effect 

of elasticity. In the future study, we will consider the 

effect of elasticity on the grain boundary under the fast 

neutron irradiation. 
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