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1. Introduction 

 

Due to current trend of light water reactors (LWRs), 

high thermal power, obsolescence, long-cycle, and 

water chemistry management, the importance of nuclear 

reactor core monitoring has been increased since early 

diagnostics of core abnormal state, and follow-up 

measures on it can reduce costs caused by the abnormal 

state.  In this study, a reactor core diagnostics program 

based on machine learning (ML) algorithm is under 

development to improve the current reactor core 

monitoring system which is based on operator’s 

proficiency. Due to the limitation of obtaining enough 

operation data to train and test a ML algorithm 

classifying various reactor core conditions, a nuclear 

core analysis code, RAST-K, is employed to generate 

dataset. Reactor abnormal conditions such as CRUD 

induced power shift (CIPS) and control rod mis-

location are modeled, and each model with randomly 

perturbated input parameters are labeled. Supervised 

learning is performed, such that control rod positions 

and detector signal data with corresponding label of 

reactor core conditions is used as training data of the 

ML models. Since the final goal of the ML model is 

being implemented in reactor core monitoring system, 

detector signal and control rods data which also can be 

observed by reactor operators are used as input of the 

ML model. 

 

2. Training data generation  

 

2.1. Data generation system 

 

Training an ML model requires huge amount of 

dataset to achieve high performance of it. For this 

reason, training dataset generation system named 

AUTOGEN has been established. The reactor analysis 

code RAST-K [1] is embedded in the system to 

compute detector signals [2] used in training of ML 

models. The data generation system is written by 

Python language, and it works with three steps as: 

 

1) Generation of abnormal core model and RAST-

K input by randomly perturbing input parameters 

2) Running RAST-K for all generated input files 

3) Extraction of target output parameters from 

output files and write it in single train dataset file 

with “csv” format.  

 

The structure of data generation is shown in Figure 1. 

In this study, 4th cycle of OPR1000 type reactor with 

full core model is used as base model of the dataset 

generation. 

 

 
 

Figure 1. Data generation system structure 

 

2.2. CRUD occurrence core model 

 

To model the core model with CRUD accumulation, 

a simple CRUD accumulation model is implemented in 

the RAST-K. The CRUD thickness of a fuel assembly 

node is defined with CRUD multiplication factor ( ) 

and subcooled nucleate boiling mass ( massSNB ) as 

follow: 

 

 
CRUD massSNB =   . (1) 

 

The boron number increase at ith depletion burnup 

step is 

 

  (if )B B CRUD CRUD thresholddN ND dV  =    , (2) 

 

where the CRUD volume increase is determined with 

the node height ( h ), the CRUD porosity ( porosityk ), and 

the outer radius of the CRUD layer (
CRUDr ) as  

 

 2 2

, , 12 (1 )( )CRUD porosity CRUD i CRUD idV h k r r −= − −  , (3) 

 

the boron number density is defined with reference 

boron number density ( refND ) at 800 ppm, and critical 

boron concentration ( CBC ) as follow 

 

 ( / 800)B refND ND CBC=   . (4) 
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Since it was analyzed that the minimum thickness of the 

CRUD for CIPS is 30 μm [3], threshold thickness 

(
threshold ) for boron holdup is 30 μm. 

The core average CRUD thickness is shown in Figure 

2 and it shows growth of CRUD during the operation.  

 

 
Figure 2. CRUD thickness increases 

 

Figure 3 shows comparison of ASI between core 

models with CRUD and without CRUD. Since boron 

holdup requires minimum thickness of CRUD, ASI 

starts to change from 2.0 GWd/MTU. Since CRUD 

accumulation and boron holdup appear at upper region 

of fuel assemblies (FAs), ASI is higher with CRUD, 

and it is lower at the end of cycle (EOC) due to low 

burnup of fuel at upper region. 

 
Figure 3. ASI comparison with CRUD occurrence 

  
In generation of core models with CRUD occurrence, 

CRUD multiplication factor (  ) is perturbed to 

generate various core conditions caused by CRUD 

accumulation. 1% difference of ASI is selected as a 

criterion for labelling CIPS data. Once CIPS occurs at 

certain burnup step, core operation data from the 

burnup step are labelled as CIPS. The procedure to 

generate the CRUD accumulated model is as follow: 

 

1) Randomly select CRUD multiplication factor 

with uniform distribution from 1E-6 to 1.5E-5. 

2) Perform steady state depletion calculation from 0 

to 17.0 GWd/MTU by using RAST-K.  

3) Labelling the data as CIPS or normal if ASI 

difference exceeds 1%. 

4) Repeat 1) ~ 3). 

 

In this study, 10,000 input files with 21 burnup steps 

were generated and calculated, giving 210,000 snap-

shop data. In the training and testing a ML model which 

classifies CRUD occurrence, 30,000 data was used for 

middle of cycle (MOC) and end of cycle (EOC), 

respectively. The core burnup for MOC data is 5.0 ~ 7.0 

GWd/MTU, and the core burnup for EOC data is 

15.0~17.0 GWd/MTU. 

 

Table 1. Dataset for CRUD occurrence model 

Burnup Power Total Normal Abnormal 

MOC 100% 30,000 18,844 11,156 

EOC 100% 30,000 12,969 17,031 

 

2.3. Control rods mis-location core model 

 

Reactor core abnormal condition with control rods 

mis-location is modeled. The model represents a core 

condition where a CEA position is different with other 

CEAs in the same sub-group, and thus, it can cause 

power tilt during the operation. The core model is 

labeled as control rod mis-location if the difference of 

CEA position exceeds 8.52 cm. The criterion of 8.52 

cm is defined with minimum rod worth of a regulating 

bank ( ,minR ), acceptable design uncertainty of control 

rod worth (10% or 100 pcm), maximum differential rod 

worth of a shutdown bank (
,maxS

d

dh


) as 

 

 ,min

,max

10% R
criteria

S

h
d

dh




=   . (5) 

  
Since 25.15 cm of the difference is a criterion used in 

OPR1000 reactor to reactor shutdown, 8.52 cm of the 

difference in this study is adjustable to develop a ML 

model for early diagnostics. Control rods in OPR1000 

reactor are driven by a motor having steps of 1.905 cm 

[4] and thus, control rod position is determined by 

sampling number of control rod steps. The procedure to 

generate control rod mis-location model is: 

 

1) Randomly sample the regulating bank position 

satisfying PDIL to determine normal core 

condition. 

2) Randomly select a CEA out of 73 CEAs to 

perturb control rod position. 

3) Sample the number of steps to insert or withdraw 

4) If the sampled step is more than 5 steps, the core 

model is labeled as control rod mis-location. 

5) Perform core calculation by using RAST-K. 

6) Repeat 1) ~ 5). 

 

10,000 data of control rod mis-location model were 

generated for BOC, 50,000 data for MOC and EOC 
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were generated. The core operating conditions are hot 

full power (HFP), 80%, and 60% core power. 

 

Table 2. Dataset for control rod mis-location model 

Burnup Power Total Normal Abnormal 

BOC 100% 10,000 5,528 4,472 

80% 50,000 27,288 22,712 

60% 50,000 27,061 22,939 

MOC 100% 10,000 5,587 4,413 

80% 50,000 27,123 22,877 

60% 50,000 27,156 22,844 

EOC 100% 10,000 5,552 4,448 

80% 50,000 27,204 22,796 

60% 50,000 27,093 22,907 

 

3. Training ML models 

 

3.1. Data description 

 

Dataset with “csv” format is used for training the ML 

model. Since ML model with supervised learning is 

target model of this study, label is included in the 

dataset. The first column of the dataset indicates the 

core states (label) and the second to end column 

represents detector signal data in the model. Figure 4 

shows example of training data file generated by the 

AUTOGEN. Each row represents information of a core 

model and first column of the data is label for the core 

model, and rest are control rod (CR) position and in-

core instrument (ICI) signal. The control rod position in 

X data is nominal position. 

 

 
Figure 4. Example of training data file 

 

Full core of OPR1000 type reactor is base core model 

of this study and it includes 73 CEAs and 225 detector 

signals (Radially 45 * axially 5). Figure 5 and 6 show 

position of CEAs and ICI FAs. Each ICI has 5 in-core 

detectors located at 10%, 30%, 50%, 70% and 90% of 

height, respectively. 

 

R1 R1

R2 R3 R2

R3 SB SB SB SB R3

R4 P1 R5 P1 R4

SB SA SA SA SA SB

R2 P1 P1 R2

R1 SB SA R1 R1 SA SB R1

R3 R5 R4 R5 R3

R1 SB SA R1 R1 SA SB R1

R2 P1 P1 R2

SB SA SA SA SA SB

R4 P1 R5 P1 R4

R3 SB SB SB SB R3

R2 R3 R2

R1 R1  
Figure 5. CEAs for OPR1000 type reactor 

 

 
Figure 6. ICI assemblies for OPR1000 type reactor 

 

3.2. ML model description 

 

Naïve Bayes (NB), Support Vector Machine (SVM), 

Deep Neural Network (DNN) and Random Forest 

(Random Forest) model were built and each model 

represents a stochastic model, a linear classification 

model, a neural network model and an ensemble model. 

Data was normalized such that it has 0 mean and unit 

variance. The normalized input data with dimension of 

293 is used as input of the ML models. The generated 

datasets of 390,000 were used to train, validate and test 

the ML models, and 60% of the dataset is used as 

trainset, and validating and testing used 20% of the 

dataset.  

Table 3 shows summary of the ML model to build.  

 

Table 3. Summary of ML model 

Model Description 

NB Stochastic model: Gaussian 

SVM Kernel: Linear 

Max. iteration: 3,000 

C: 1.0 

DNN Number of hidden layers: 4 (D = 64) 

Activation function: ReLu 

Number of trainable parameters: 31,746 

Optimizer: Adam 

Epochs: 300 

RF Number of trees: 200 

Depth of tree: Max. 
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4. Results 

 

4.1. Classification for reactor core state  

 

Prediction accuracy of the ML models were 

compared for CRUD occurrence and CR mis-location. 

Training on binary classification (normal vs. abnormal) 

was performed and its prediction accuracy was tested. 

The accuracy of the model is defined with true positive 

(TP), true negative (TN), false positive (FP) and false 

negative (FN) as follow: 

 

 
TP TN

accuracy
TP TN FP FN

+
=

+ + +
 . (6) 

 

Binary classification prediction results for the ML 

models are shown in Table 4 and Table 5. All ML 

models well predicts CRUD occurrence showing 90% 

prediction accuracy.  

 

Table 4. Prediction accuracy [%] for CRUD occurrence  

 NB SVM DNN RF 

MOC 92.90 99.95 99.98 99.86 

EOC 97.43 99.96 99.96 99.98 

 

The prediction accuracy for CR mis-location reduces 

as core power decreases. As power decreases, more 

regulating bank positions are possible since power 

dependent power insertion limit (PDIL) is loosen at 

lower power. Since that, as power decreases, the ratio of 

unseen data in test data increases, decreasing the 

accuracy. 

 

Table 5. Prediction accuracy [%] for CR mis-location 

 Power NB SVM DNN RF 

BOC 100% 79.50 87.00 100.00 100.00 

80% 52.74 49.01 95.52 100.00 

60% 54.43 53.08 89.50 88.35 

MOC 100% 79.40 83.65 100.00 100.00 

80% 51.97 47.09 96.67 92.87 

60% 55.50 51.62 91.11 89.12 

EOC 100% 78.40 39.55 100.00 100.00 

80% 56.19 47.30 98.37 93.65 

60% 55.54 47.68 93.69 89.37 

 

The synthesis operation data generated by the RAST-

K does not include noise of the signal. To test 

feasibility of the ML models in real NPP data, 1% of 

artificial noise was applied to ICI signal. The noise has 

gaussian distribution with 1% standard deviation of the 

signal. The prediction accuracy of the ML models for 

CR mis-location with 1% ICI signal noise is shown in 

Table 6. By adding noise in ICI signal, prediction 

accuracy reduced comparing to results in Table 7. 

Because ICI signal is the only parameter representing 

power distribution in training data, noise of it reduces 

the prediction accuracy. 

 

 

Table 6. Prediction accuracy [%] for CR mis-location 

with 1% of ICI signal noise 

 Power NB SVM DNN RF 

BOC 100% 79.50 87.00 100.00 100.00 

80% 52.74 49.01 95.52 100.00 

60% 54.43 53.08 89.50 88.35 

MOC 100% 79.40 83.65 100.00 100.00 

80% 51.97 47.09 96.67 92.87 

60% 55.50 51.62 91.11 89.12 

EOC 100% 78.40 39.55 100.00 100.00 

80% 56.19 47.30 98.37 93.65 

60% 55.54 47.68 93.69 89.37 

 

Comparing the prediction results of tested ML 

models, DNN and RF model shows better accuracy 

comparing to NB and SVM. 

 

5. Conclusion 

 

In this study, framework for developing ML model in 

reactor core diagnostics has been established with three 

steps: 1) Establishment of dataset generation system 

based on RAST-K, 2) Generation of data for CRUD 

occurrence and CR mis-location core models and 3) 

Building and training of ML models. In this framework, 

the generated dataset was applied to train various ML 

models such as Naïve Bayes(NB), Support Vector 

Machine(SVM), Deep neural Network(DNN) and 

Random Forest(RF). Comparison of the results showed 

that DNN and RF model has better performance in 

reactor core diagnostics than other ML models. With 

high prediction accuracy of DNN and RF model, one 

can conclude that the application of a ML model in 

reactor core diagnosis is feasible. In the future, model 

data will be generated to reduce ratio of unseen data, 

additional parameters will be used as trainset for better 

performance. More reactor core models with abnormal 

condition will be generated for real NPP application. 
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