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1. Introduction 

 
The fatigue life of nuclear power plant components is 

estimated based on the fatigue design curve described in 

the ASME Boiler & Pressure Vessel Code Section III [1, 

2]. The design curve is based on the best fitting curve of 

fatigue life for a given stress/strain amplitude data, and 

after, conservatively corrected to consider the associated 

uncertainties (e.g., surface finish, material grade).  

However, there is a limitation that the fatigue design 

curve is basically estimated based on fatigue test data 

performed in an in-air environment. Decades ago, when 

the initial nuclear power plant was designed, it was 

considered that there was no problem in the use of the 

fatigue design curve. However, as the nuclear power 

plant aged, it has been reported that the environmental 

effect of corrosion greatly shortened the fatigue life (i.e., 

environmental fatigue). Thus, Reg. Guide 1.207 requires 

the fatigue life to be corrected by the existing design 

curve by an additional environmental correction factor 

to account for these environmental effects for nuclear 

components in LWR(Light Water Reactor) coolant 

environments [3]. 

In this work, the objective is to extend the above 

fatigue life prediction approach from deterministic to 

probabilistic. The probabilistic approach has the 

following two advantages: 1) The probabilistic model 

can quantify the safety margin as a level of failure 

probability. 2) In the model estimation step, the 

probabilistic approach can account for the censored data 

in the test, which are usually neglected in the 

deterministic approach. 

 

2. Literature Survey and Data Extraction 

 

For Ni-based alloys and weldments except for Alloy 

718, the ASME fatigue design curve is specified to 

follow the fatigue design curve of AuSS (Austenitic 

Stainless Steel) material [1, 2]. The best fit S-

N(stress/strain amplitude vs. fatigue life) curve for AuSS 

and Ni-based Alloys is 

 

ln𝑁𝑓,Air = 6.891 − 1.920 ln(𝜀𝑎 − 0.112) (1) 

 

where, 𝑁𝑓,Air is the in-air fatigue life (cycles), and 𝜀𝑎 is 

the strain amplitude (%). The fatigue design curve is then 

calculated using an adjustment life factor of 12 and 

stress/strain factor of 2 based on the best fit S-N curve 

(Eq. 1). 

The environmental correction factors for nickel-based 

alloys and welding materials covered in this study are 

presented as a function of temperature, strain rate, and 

dissolved oxygen (DO) values as follows [2]. 

 

𝐹en =
𝑁𝑓,air

𝑁𝑓,water
= exp(−𝑇∗𝜀̇∗𝑂∗) (2a) 

𝑇∗ = {
    0       (𝑇 < 50 ℃)
𝑇 − 50

275
(50 ℃ ≤ 𝑇 ≤ 325 ℃)

 (2b) 

𝜀̇∗ =

{
 
 

 
 

0 (𝜀̇ > 5.0%/𝑠)

ln
𝜀̇

5
(0.0004 %/𝑠 ≤ 𝜀̇ ≤ 5.0 %/𝑠)

ln
0.0004

5
(𝜀̇ < 0.0004 %/𝑠)

 (2c) 

𝑂∗ = {
0.06 (BWR water,  DO ≥ 0.1 ppm)

0.14 (PWR water,  DO < 0.1 ppm)
 (2d) 

 

where, 𝐹en  is the environmental correction factor, and 

𝑁𝑓,water  is the LWR-water fatigue life, 𝑇  is the 

temperature (°C), 𝜀̇ is the strain rate (%/s), 𝑇∗, 𝜀̇∗, 𝑂∗ are 

the effect terms of temperature, strain rate, and DO, 

respectively. The NUREG/CR-6909 report, which 

provides above formula for calculating environmental 

correction factors through Eq. 2, collects environmental 

fatigue test data that have been conducted worldwide so 

far, and the database results are presented in the form of 

graphs in the report. In this study, the in-air and 

environmental fatigue test data given in NUREG/CR-

6909 was extracted using a graph digitizer program. The 

results are as follows. 

 
Figure 1 All fatigue data of Ni-base Alloys and welding 

materials extracted from NUREG/CR-6909, classified 

according to in-air/LWR-water environment and exact/right-

censoring data. 

 

 The number of fatigue data for nickel-based alloys 

published in the NUREG/CR-6909 report is 559 in 

in-air and 162 in LWR-water conditions. Among 

these, the number of fatigue data extracted by the 
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graph digitizer program in this study is 529 in-air data 

and 137 LWR-water data. The data mentioned below 

all refer to the data that were extracted in this study. 

 The 529 in-air data consisted of 522 exact (failed at 

the time) data and 7 right-censored (survived at the 

time) data. The 137 LWR-water data consisted of 131 

exact data and 6 right-censored data (see Fig. 1). The 

solid gray line in Fig. 1 is the reference model 

equation that corresponds to the in-air best fit curve 

of the AuSS material (Eq. 1). 

 When 529 in-air data are classified according to 

base/weld metal, 397 are base metal data and the 

remaining 132 are weld metal data. The 397 in-air 

base metal data consist of 191 Alloy 600 data, 17 

Alloy 690 data, 196 Alloy 718 data, and 23 Alloy 800 

data. The fatigue resistance of Alloy 718 material is 

superior to that of the other nickel-based alloy 

materials. Meanwhile, 132 in-air weld metal data 

include 10 Alloy 52 data, 50 Alloy 82 data, 6 Alloy 

132 data, 6 Alloy 152 data, 26 Alloy 182 data, 6 Alloy 

690 weld data, and 28 unclassified as other NiCrFe 

weld data. 

 When 529 in-air data are classified according to 

experimental temperature, they can be divided into 

432 400 °C and below data and 97 427 °C data. The 

97 data performed at 427 °C consisted of 81 Alloy 

718 data and 16 Alloy 800 data. The 427 °C data 

appear to have longer fatigue life than the data below 

400 °C, because the fatigue resistance of Alloy 718 

material itself, which makes up the majority of the 

427 °C data, is much higher than that of other nickel-

based alloy materials. The NUREG/CR-6909 report 

states that the in-air environmental fatigue life of 

AuSS materials has little effect on the temperature 

below 400 ° C. However, also the report states that 

the data given are not sufficient to investigate the 

effect of fatigue life above 400 ° C. 

 When 137 LWR-water data are classified according 

to base/weld metal, 83 are base metal data and the 

remaining 54 are weld metal data. The 83 LWR-

water base metal data consist of 67 Alloy 600 data 

and 16 Alloy 690 data. Meanwhile, 54 LWR-water 

weld metal data consist of 8 Alloy 82 data, 9 Alloy 

132 data, 10 Alloy 152 data, 26 Alloy 182 data and 1 

Alloy 690 weld data. 

 The 137 LWR-water data can be classified by 

temperature into 6 100 °C data, 5 200 °C data, 73 

288 °C data and 53 325 °C data. 

 137 LWR-water data can be classified by strain rate: 

7 0.0001%/s data, 19 0.001%/s data, 1 0.004%/s data, 

3 0.01%/s data, 16 0.04%/s data, 8 0.1%/s data, and 

83 0.4%/s data. 

 137 LWR-water data can be classified by DO level: 

54 0.005 ppm data, 5 0.007 ppm data, 5 0.01 ppm data, 

69 0.2 ppm data, and 4 8 ppm data. 

 

The next step is to estimate a probabilistic fatigue life 

prediction model using the above nickel-based alloy in-

air and LWR-water data. However, we only considered 

Alloy 600/690 base/weld metal data for the following 

reasons: 

 

 All in-air Alloy 600/690 base/weld metal data were 

conducted at temperatures below 400 °C. Therefore, 

it is possible to neglect in-air temperature effects on 

fatigue life. In the in-air condition, at temperatures 

above 400 °C, the temperature effect has not been 

clearly identified yet [2]. 

 Alloy 718 has a significantly higher fatigue resistance 

than other nickel-based alloys. When included those 

data in a one data set, the conservatism of estimated 

model could be decreased. 

 All materials tested in the LWR-water environment 

are Alloy 600/690, base/weld metal data. Therefore, 

it is possible to exclude material grade effect when 

we consider only in-air Alloy 600/690 base/weld 

metal data. 

 

Therefore, a total of 283 in-air data were selected from 

the original 529 in-air data set, which consists of 176 

Alloy 600 base metal data, 82 Alloy 600 weld metal (i.e., 

Alloy 82/182/132) data, 13 Alloy 690 base metal data, 12 

Alloy 690 weld metal (i.e., Alloy 152/52) data. 

Meanwhile, a total of 137  LWR-water data are all used, 

which consists of 67 Alloy 600 base metal data, 43 Alloy 

600 weld metal data, 16 Alloy 690 base metal data, and 

11 Alloy 690 weld metal data. 

 

3. Probabilistic Model Development 

 

We assumed the Weibull distribution as the basic 

functional form of the fatigue life model [4]. The Weibull 

distribution is one of the most widely used distributions 

for probabilistic modeling of material lifetime. It is 

applicable when the size of the considered components 

is macroscopic and the failure mechanism follows the 

weakest link behavior [5]. In this study, the following 

two parameter Weibull distribution is adopted. 

 

𝐹(𝑁𝑓; 𝛽, 𝜂) = 1 − exp [− (
𝑁𝑓

𝜂
)
𝛽

] (3a) 

𝑓(𝑁𝑓; 𝛽, 𝜂 ) =
𝛽

𝜂
(
𝑁𝑓

𝜂
)
𝛽−1

exp [− (
𝑁𝑓

𝜂
)
𝛽

] (3b) 

 

where, 𝐹  and 𝑓  correspond to the Cumulative 

Distribution Function (CDF) and the Probability Density 

Function (PDF) of the Weibull distribution, 𝑁𝑓  is the 

fatigue life, 𝛽 is the shape parameter, and 𝜂 is the scale 

parameter. The shape parameter is a parameter related to 

the time-dependent degradation behavior of the material 

and is generally considered a material constant. On the 

other hand, the scale parameter corresponds to the 

quartile when the CDF value is about 0.632. If the shape 

parameter is 1, the scale parameter is equal to the 

expectation of the probability distribution. Therefore, the 

scale parameter is often used as a representative value for 

the corresponding probability distribution. 
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In this work, we assumed the following environmental 

fatigue life model based on the Eq. 2. 

 

𝜂(𝜂air, 𝐹en) =
𝜂air
𝐹en

 (4a) 

𝜂air(𝜀𝑎; 𝜃1, 𝜃2, 𝜃3) = (
𝜀𝑎 − 𝜃3
𝜃1

)

1
𝜃2

 (4b) 

𝐹en(𝑇
∗, 𝜀̇∗, 𝑂∗)

= {
1               (In − air)

exp(−𝑇∗𝜀̇∗𝑂∗) (LWR − water)
 

(4c) 

𝑇∗(𝑇; 𝑎𝑇 , 𝑏𝑇) =
𝑇 − 𝑎𝑇
𝑏𝑇

 (4d) 

𝜀̇∗(𝜀̇; 𝑎�̇�) = ln (
𝜀̇

𝑎�̇�
) (4e) 

𝑂∗(DO) = 1 + (𝑎DO − 1)𝐻(DO − 0.1)

= {
 1 (PWR water,  DO < 0.1 ppm)

𝑎DO (BWR water,  DO ≥ 0.1 ppm)
 

(4f) 

 

where, 𝜂air  is the in-air Weibull scale parameter, 

𝜃1, 𝜃2, 𝜃3, 𝑎𝑇 , 𝑏𝑇 , 𝑎�̇� , 𝑎DO are the parameters which should 

be estimated from the data, and 𝐻 is the Heaviside step 

function. From Eqs. 3 and 4, it can be seen that the total 

number of parameters to be estimated is eight. In this 

study, MLE (Maximum Likelihood Estimation) method 

is used to estimate the parameters. The MLE method has 

the advantage that the most reliable estimate can be 

obtained when the number of data is large enough, and 

that the bias of the estimated Weibull scale parameter is 

small compared to the median rank regression method, 

which is another Weibull parameter estimation method 

[5, 6]. The likelihood function for the MLE method can 

be calculated as follows. 

 

𝐿 = 𝐿air𝐿water (5a) 

𝐿air(𝛽, 𝜃1, 𝜃2, 𝜃3) =  ∏[𝑓(𝑁𝑓,𝑖 , 𝜀𝑎,𝑖)]

𝑁𝐸,air

𝑖=1

∙ ∏ [1 − 𝐹(𝑁𝑓,𝑗 , 𝜀𝑎,𝑗)]

𝑁𝑅,air

𝑗=1

 

(5b) 

𝐿water(𝛽, 𝜃1 , 𝜃2, 𝜃3, 𝑎𝑇 , 𝑏𝑇 , 𝑎�̇� , 𝑎DO)

=  ∏ [𝑓(𝑁𝑓,𝑖 , 𝜀𝑎,𝑖 , 𝑇𝑖 , 𝜀�̇� , DO𝑖)]

𝑁𝐸,water

𝑖=1

∙ ∏ [1 − 𝐹(𝑁𝑓,𝑗 , 𝜀𝑎,𝑗 , 𝑇𝑗 , 𝜀�̇� , DO𝑗)]

𝑁𝑅,water

𝑗=1

 

(5c) 

𝑙 = ln 𝐿 = ln 𝐿air + ln 𝐿water (5d) 

 

where, 𝐿 is the total likelihood function, 𝐿air, 𝐿water are 

the partial likelihood functions for in-air and LWR-water 

data, 𝑁𝐸,air, 𝑁𝑅,air, 𝑁𝐸,water, 𝑁𝑅,water are the number of 

exact/right-censored in-air/LWR-water data, 𝑖, 𝑗 are the 

data indexes, 𝑙 is the log-likelihood function. 

The goal of the MLE method is to find a combination 

of parameters that maximizes the log-likelihood function. 

This is similar to the unbounded optimization problem, 

except that you need to find the maximum value of the 

log-likelihood function, not the minimum value of the 

objective function. The solution to this problem is the 

same as the solution of the system of simultaneous 

differential equations in Eq. 6. Because Eq. 6 is a 

nonlinear and its form is very complex, it is truly difficult 

to solve analytically. Therefore, in this study, the 

solution was solved using the numerical method, 

conjugate gradient method [7]. The convergence 

criterion is when the L2 norm of the relative difference 

becomes less than 1e-6. 

 

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

𝜕

𝜕𝛽
𝑙(𝛽, 𝜃1 , 𝜃2, 𝜃3, 𝑎𝑇 , 𝑏𝑇 , 𝑎�̇� , 𝑎DO) = 0

𝜕

𝜕𝜃1
𝑙(𝛽, 𝜃1, 𝜃2, 𝜃3, 𝑎𝑇 , 𝑏𝑇 , 𝑎�̇� , 𝑎DO) = 0

𝜕

𝜕𝜃2
𝑙(𝛽, 𝜃1 , 𝜃2, 𝜃3, 𝑎𝑇 , 𝑏𝑇 , 𝑎�̇� , 𝑎DO) = 0

𝜕

𝜕𝜃3
𝑙(𝛽, 𝜃1 , 𝜃2, 𝜃3, 𝑎𝑇 , 𝑏𝑇 , 𝑎�̇� , 𝑎DO) = 0

𝜕

𝜕𝑎𝑇
𝑙(𝛽, 𝜃1, 𝜃2, 𝜃3, 𝑎𝑇 , 𝑏𝑇 , 𝑎�̇� , 𝑎DO) = 0

𝜕

𝜕𝑏𝑇
𝑙(𝛽, 𝜃1, 𝜃2, 𝜃3, 𝑎𝑇 , 𝑏𝑇 , 𝑎�̇� , 𝑎DO) = 0

𝜕

𝜕𝑎�̇�
𝑙(𝛽, 𝜃1 , 𝜃2, 𝜃3, 𝑎𝑇 , 𝑏𝑇 , 𝑎�̇� , 𝑎DO) = 0

𝜕

𝜕𝑎DO
𝑙(𝛽, 𝜃1, 𝜃2, 𝜃3, 𝑎𝑇 , 𝑏𝑇 , 𝑎�̇� , 𝑎DO) = 0

 (6) 

 

Table 1 shows the parameter estimates obtained using 

the in-air/LWR-water Alloy 600/690 base/weld metal 

data and the MLE method above, and Figure 2 shows the 

estimated Weibull model. Most of the in-air data are well 

contained within the 90% confidence bounds of the in-

air condition Weibull model. Therefore, the fatigue life 

model estimated in this study was judged to be 

appropriate. 

 
Table 1 Results of MLE parameter estimation. 

�̂� �̂�1 �̂�2 �̂�3 

1.2361 9.1842 -0.3267 0.0444 

�̂�𝑇 �̂�𝑇 �̂��̇� �̂�DO 

-39.8713 2651.1 6.4886 0.6563 

 

 
Figure 2 Result of Weibull-based probabilistic environmental 

fatigue life model. 

 



   

     

 

 
4. Conclusions 

 

In this study, the NUREG/CR-6909 report was 

reviewed and the data in the report was extracted. We 

estimated the Weibull-based probabilistic life prediction 

model of the environmental fatigue using those end-of-

life data. The resulting probabilistic model considering 

environmental effect well fits the original raw data set. 
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