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1. Introduction 

 
Fuel depletion calculations are one of the most 

valuable calculations in reactor core design that modern 

computer simulation codes can do. They are widely used 

in such applications as new reactor design and multi-

cycle fuel loading pattern (LP) search for existing 

nuclear power plants (NPP). Given such an important 

role, depletion solvers of modern codes are expected to 

be fast and accurate at the same time.  

A commonly used method that meets both of stated 

requirements is Chebyshev Rational Approximation 

Method (CRAM) applied to a system of burnup 

equations as discussed in [1]. This method allows finding 

individual nuclide number densities as functions of fuel 

burnup using numerically determined fitting coefficients 

of a chosen order. Being a reliable technique, CRAM is 

used in our inhouse nodal diffusion code RAST-K [2].  

Currently, RAST-K can perform fuel depletion 

calculations for thermal reactors (TR) with square 

geometry fuel assembly (FA) lattice. However, 

development of a fast reactor (FR) module with 

hexagonal FA geometry for RAST-K is on its final stage. 

One of the key requirements for the new module is fast 

computation speed. Therefore, it was decided to develop 

both CPU and graphics card (GPU) versions of the code 

to check for potential benefits of using GPU acceleration 

in FR code. 

 

2. RAST-K Fast Reactor Depletion Solver 

 

RAST-K is originally developed for a single-core 

CPU simulation. Hence, it can be used on any personal 

computer (PC). Since some of user PCs already have an 

installed GPU, it is attractive to provide a built-in code 

capability of using GPU acceleration. Another reason for 

introducing GPU acceleration specifically in FR module 

is its’ presumably larger computation time compared to 

TR module. In more details, a comparison of FR and TR 

codes is discussed in subsection 2.1. 

 

2.1 Comparison of Thermal Reactor and Fast Reactor 

Depletion Solvers 

 

The difference between TR and FR modules is caused 

by the difference in neutron spectrum for each of these 

modules. Thus, RAST-K TR code is using only 2 neutron 

energy groups whereas a new FR code has to use 24 

neutron groups. Fast neutrons are known to have 

relatively small interaction cross-sections with the entire 

range of nuclides unlike thermal neutrons that not only 

have generally higher values of cross-sections but also 

higher discrepancy of those values for different nuclides. 

As a result, TR module can produce an accurate result 

while updating only a small group of most important 

nuclides such as fuel nuclides and fission products (FP) 

with high values of absorption cross-sections. On the 

contrary, FR module needs to account for a larger portion 

of nuclides since more heavy metal nuclides (HM) are 

fissile in fast neutron spectrum, and most of fission 

products have their cross-section values in 

approximately the same range.  

Another point worth mentioning is a slight difference 

in geometry. Most TR in the world are using rectangular 

FA geometry, which is divided plain-wise into 4 

geometrical nodes. As for FR, they are usually designed 

using a hexagonal geometry, which requires using 6-

node plain-wise division in the way discussed in [3]. All 

in all, those factors make the FR code more 

computationally intensive as it needs to account for 

higher number of variables in previously mentioned 

burnup calculations. This yields a necessity to accelerate 

the code using alternative approaches such as running 

part of the code on GPU. 

 

2.2 GPU Acceleration 

 

As shown by Pusa, the formula for updating the list of 

nuclide number densities N is the following: 

 

𝑵 = 𝛼0𝑵𝟎 + 𝟐 ∙ 𝒓𝒆𝒂𝒍(∑ 𝛼𝑗(𝑨𝑡 − 𝜃𝑗𝑰)
−1

𝒐𝒓𝒅𝒆𝒓

𝟐
𝒋=𝟏

𝑵𝟎)  (1) 

 

In equation (1), matrix and vector components are 

stated in bold capital letters, other components are either 

real or complex numbers. In terms of GPU acceleration 

(omitting operations of multiplication by a number for 

brevity), this formula can be restated as shown on Fig. 1. 

 

 
Fig. 1. GPU acceleration algorithm for CRAM. 

As pointed out on Fig. 1, almost all matrix operations 

of the method can be effectively accelerated on GPU 
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except for matrix inverse. The original RAST-K code is 

using Gauss-Jordan method for matrix inverse 

calculation. This method is not applicable for parallel 

computation on GPU as it requires a strict sequence of 

operations. Therefore, it should be computed on CPU 

because a single CPU core is much more powerful than 

a single GPU core (though, the advantage of a GPU is 

that it consists of thousands of cores). As for other matrix 

inverse methods that would be suitable for highly parallel 

computation on GPU, no currently available effective 

methods were found in literature at the moment of 

writing this paper. Nonetheless, even a partial 

acceleration of the code could be beneficial for the 

overall code performance.  

 

2.3 Speed Comparison Results 

 

For the speed comparison of a CPU and a GPU version 

of RAST-K FR Depletion Solver, the following initial 

conditions and equipment were used. RAST-K is written 

in Fortran language. The GPU acceleration routines were 

written using CUDA Fortran [4]. Therefore, most of the 

code stayed the same for both CPU and GPU versions, 

which is advantageous in terms of code conversion from 

CPU to GPU version. A single core of Intel Core i7 

7700K at 4,37GHz was used for running both versions of 

the code, and nVidia GeForce RTX 2060 SUPER was 

used for GPU acceleration. For the GPU version of the 

code, an algorithm shown on Fig. 1 was implemented. 

The test problem of choice was a single node fuel 

depletion calculation for 221 nuclides (28 HM and 193 

FP) and 22 burnup points. The result of calculation could 

be found in Table I. 

 

Table I: Comparison of CPU and GPU versions of RAST-K 

Fast Reactor Depletion Solver 

Parameter Pure CPU CPU+GPU Difference, % 

Time per 

burnup 

step, sec 

0.22 0.18 18.18 

Total time, 

sec 
4.48 3.98 11.16 

 

The following observations could be made based on 

the result shown in Table I. First, even adding a small 

portion of GPU accelerated code could noticeably 

increase the speed of computation, which is expected to 

save a proportional amount of computation time when 

applied to a real core consisting of thousands of 

geometrical nodes. Second, the result of the GPU 

accelerated code includes operations of copying data 

from CPU to GPU and back at each burnup step, and 

additionally for each matrix inverse calculation in the 

middle of each step. As stated in [4], operations of 

copying data to and from GPU are quite time-consuming 

and should be avoided as much as possible. Hence, 

further improvements of the code by converting a larger 

part of the CPU code into GPU code could result in 

further speed improvements. 

The most challenging part of adding GPU acceleration 

to RAST-K FR Depletion Solver is to find an effective 

method for parallel matrix inverse calculation. This 

would allow to eliminate data copying in the middle of 

each burnup step thus reducing the time of computation. 

Finally, important observation could be made based on 

the data type used in this study and the difference 

between the CPU and the GPU calculation results for the 

last 22nd burnup point. Since double precision is used for 

both CPU and GPU codes, no difference in result was 

observed based on straight-forward subtraction of the 

CPU result from the GPU result for all studied burnup 

points. However, GPUs may benefit from using single 

precision as it would allow storing twice as much data on 

their limited on-board memory as well as further increase 

the speed of computation. 

 

3. Conclusions 

 

A potential application of GPU acceleration for 

RAST-K Fast Reactor Depletion Solver was evaluated in 

this study. It was found that running even a small portion 

of matrix operations on a GPU could noticeably reduce 

required computation time. At the same time, some 

matrix operations such as finding a matrix inverse are not 

currently applicable for GPU acceleration. Therefore, 

future studies are expected on finding an effective highly 

parallel method for inverse matrix determination. 

A detailed analysis of the studied test problem showed 

that excessive copying of data to and from GPU could 

cause a noticeable drop in the overall performance. 

Hence, future work on converting a larger part of the 

code into GPU code is planned in order to further 

improve the computation speed. 
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