

Applicability of GPU Acceleration for RAST-K Fast Reactor Depletion Solver

Siarhei Dzianisau, Deokjung Lee*

Department of Nuclear Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan,

44919
*Corresponding author: deokjung@unist.ac.kr

1. Introduction

Fuel depletion calculations are one of the most

valuable calculations in reactor core design that modern

computer simulation codes can do. They are widely used

in such applications as new reactor design and multi-

cycle fuel loading pattern (LP) search for existing

nuclear power plants (NPP). Given such an important

role, depletion solvers of modern codes are expected to

be fast and accurate at the same time.

A commonly used method that meets both of stated

requirements is Chebyshev Rational Approximation

Method (CRAM) applied to a system of burnup

equations as discussed in [1]. This method allows finding

individual nuclide number densities as functions of fuel

burnup using numerically determined fitting coefficients

of a chosen order. Being a reliable technique, CRAM is

used in our inhouse nodal diffusion code RAST-K [2].

Currently, RAST-K can perform fuel depletion

calculations for thermal reactors (TR) with square

geometry fuel assembly (FA) lattice. However,

development of a fast reactor (FR) module with

hexagonal FA geometry for RAST-K is on its final stage.

One of the key requirements for the new module is fast

computation speed. Therefore, it was decided to develop

both CPU and graphics card (GPU) versions of the code

to check for potential benefits of using GPU acceleration

in FR code.

2. RAST-K Fast Reactor Depletion Solver

RAST-K is originally developed for a single-core

CPU simulation. Hence, it can be used on any personal

computer (PC). Since some of user PCs already have an

installed GPU, it is attractive to provide a built-in code

capability of using GPU acceleration. Another reason for

introducing GPU acceleration specifically in FR module

is its’ presumably larger computation time compared to

TR module. In more details, a comparison of FR and TR

codes is discussed in subsection 2.1.

2.1 Comparison of Thermal Reactor and Fast Reactor

Depletion Solvers

The difference between TR and FR modules is caused

by the difference in neutron spectrum for each of these

modules. Thus, RAST-K TR code is using only 2 neutron

energy groups whereas a new FR code has to use 24

neutron groups. Fast neutrons are known to have

relatively small interaction cross-sections with the entire

range of nuclides unlike thermal neutrons that not only

have generally higher values of cross-sections but also

higher discrepancy of those values for different nuclides.

As a result, TR module can produce an accurate result

while updating only a small group of most important

nuclides such as fuel nuclides and fission products (FP)

with high values of absorption cross-sections. On the

contrary, FR module needs to account for a larger portion

of nuclides since more heavy metal nuclides (HM) are

fissile in fast neutron spectrum, and most of fission

products have their cross-section values in

approximately the same range.

Another point worth mentioning is a slight difference

in geometry. Most TR in the world are using rectangular

FA geometry, which is divided plain-wise into 4

geometrical nodes. As for FR, they are usually designed

using a hexagonal geometry, which requires using 6-

node plain-wise division in the way discussed in [3]. All

in all, those factors make the FR code more

computationally intensive as it needs to account for

higher number of variables in previously mentioned

burnup calculations. This yields a necessity to accelerate

the code using alternative approaches such as running

part of the code on GPU.

2.2 GPU Acceleration

As shown by Pusa, the formula for updating the list of

nuclide number densities N is the following:

𝑵 = 𝛼0𝑵𝟎 + 𝟐 ∙ 𝒓𝒆𝒂𝒍(∑ 𝛼𝑗(𝑨𝑡 − 𝜃𝑗𝑰)
−1

𝒐𝒓𝒅𝒆𝒓

𝟐
𝒋=𝟏

𝑵𝟎) (1)

In equation (1), matrix and vector components are

stated in bold capital letters, other components are either

real or complex numbers. In terms of GPU acceleration

(omitting operations of multiplication by a number for

brevity), this formula can be restated as shown on Fig. 1.

Fig. 1. GPU acceleration algorithm for CRAM.

As pointed out on Fig. 1, almost all matrix operations

of the method can be effectively accelerated on GPU

Transactions of the Korean Nuclear Society Virtual Spring Meeting

July 9-10, 2020

except for matrix inverse. The original RAST-K code is

using Gauss-Jordan method for matrix inverse

calculation. This method is not applicable for parallel

computation on GPU as it requires a strict sequence of

operations. Therefore, it should be computed on CPU

because a single CPU core is much more powerful than

a single GPU core (though, the advantage of a GPU is

that it consists of thousands of cores). As for other matrix

inverse methods that would be suitable for highly parallel

computation on GPU, no currently available effective

methods were found in literature at the moment of

writing this paper. Nonetheless, even a partial

acceleration of the code could be beneficial for the

overall code performance.

2.3 Speed Comparison Results

For the speed comparison of a CPU and a GPU version

of RAST-K FR Depletion Solver, the following initial

conditions and equipment were used. RAST-K is written

in Fortran language. The GPU acceleration routines were

written using CUDA Fortran [4]. Therefore, most of the

code stayed the same for both CPU and GPU versions,

which is advantageous in terms of code conversion from

CPU to GPU version. A single core of Intel Core i7

7700K at 4,37GHz was used for running both versions of

the code, and nVidia GeForce RTX 2060 SUPER was

used for GPU acceleration. For the GPU version of the

code, an algorithm shown on Fig. 1 was implemented.

The test problem of choice was a single node fuel

depletion calculation for 221 nuclides (28 HM and 193

FP) and 22 burnup points. The result of calculation could

be found in Table I.

Table I: Comparison of CPU and GPU versions of RAST-K

Fast Reactor Depletion Solver

Parameter Pure CPU CPU+GPU Difference, %

Time per

burnup

step, sec

0.22 0.18 18.18

Total time,

sec
4.48 3.98 11.16

The following observations could be made based on

the result shown in Table I. First, even adding a small

portion of GPU accelerated code could noticeably

increase the speed of computation, which is expected to

save a proportional amount of computation time when

applied to a real core consisting of thousands of

geometrical nodes. Second, the result of the GPU

accelerated code includes operations of copying data

from CPU to GPU and back at each burnup step, and

additionally for each matrix inverse calculation in the

middle of each step. As stated in [4], operations of

copying data to and from GPU are quite time-consuming

and should be avoided as much as possible. Hence,

further improvements of the code by converting a larger

part of the CPU code into GPU code could result in

further speed improvements.

The most challenging part of adding GPU acceleration

to RAST-K FR Depletion Solver is to find an effective

method for parallel matrix inverse calculation. This

would allow to eliminate data copying in the middle of

each burnup step thus reducing the time of computation.

Finally, important observation could be made based on

the data type used in this study and the difference

between the CPU and the GPU calculation results for the

last 22nd burnup point. Since double precision is used for

both CPU and GPU codes, no difference in result was

observed based on straight-forward subtraction of the

CPU result from the GPU result for all studied burnup

points. However, GPUs may benefit from using single

precision as it would allow storing twice as much data on

their limited on-board memory as well as further increase

the speed of computation.

3. Conclusions

A potential application of GPU acceleration for

RAST-K Fast Reactor Depletion Solver was evaluated in

this study. It was found that running even a small portion

of matrix operations on a GPU could noticeably reduce

required computation time. At the same time, some

matrix operations such as finding a matrix inverse are not

currently applicable for GPU acceleration. Therefore,

future studies are expected on finding an effective highly

parallel method for inverse matrix determination.

A detailed analysis of the studied test problem showed

that excessive copying of data to and from GPU could

cause a noticeable drop in the overall performance.

Hence, future work on converting a larger part of the

code into GPU code is planned in order to further

improve the computation speed.

Acknowledgement

This work was supported by the National Research

Foundation of Korea (NRF) grant funded by the Korea

government (MSIT). (No.NRF-2017M2A8A2018595)

REFERENCES

[1] M. Pusa, Rational Approximations to the Matrix

Exponential in Burnup Calculations, Nuclear Science and

Engineering, Vol.169, No.2, pp.155-167, 2011.

[2] J. Choe, S. Choi, P. Zhang, J. Park, W. Kim, H. Shin, H.

Lee, J. Jung, D. Lee, Verification and validation of

STREAM/RAST-K for PWR analysis, Nuclear Engineering

and Technology, Vol.51, No.2, pp.356-368, 2019.

[3] J. Y. Cho, B. O. Cho, H. G. Joo, S. Q. Zee, S. Y. Park, Non-

linear triangle-based polynomial expansion nodal method for

hexagonal core analysis, KAERI/TR--1652/2000, 2000.

[4] M. Fatica, G. Ruetsch, CUDA Fortran for Scientists and

Engineers, Morgan Kaufmann, 2014.

Transactions of the Korean Nuclear Society Virtual Spring Meeting

July 9-10, 2020

