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1. Introduction 
 

The problem of prediction of thermal-hydraulic prop-
erties of nuclear reactor can be considered as an optimi-
zation problem where the parameters of correlation func-
tion are estimated from experimental data. Normally, the 
experiments cannot cover all of the measurements of in-
terest. We developed a reconstruction method using 
compressive sensing (CS) for the unmeasured data. The 
least-squares method is a traditional approach to find the 
parameters of correlation. Method of least-squares often 
leads a resulting cost function to local minima and is apt 
to be ill-conditioned. In this paper, the method of simu-
lated annealing (SA) is used for estimating thermal-hy-
draulic parameters of the empirical correlation from ex-
perimental data.[1] 

 
2. Correlation development and compressive sensing 
 

In this section, techniques used to generate correlation 
function and reconstruct unmeasured data are described. 

 
2.1 Correlation function development [1] 

 
A general format of the correlation function is given 

by 
 

 𝑓(𝑥, 𝑦, 𝑧) = 𝑎 ∙ 	𝑥! ∙ 𝑦" ∙ 𝑧#. (1) 
 
where 𝑓 is the output correlation function, 𝑥, 𝑦 and 𝑧 are 
input variables, and 𝑎, 𝑏, 𝑐, 𝑑 are the parameters to be es-
timated. 

For the demonstration of the developed method, we 
select the correlation of degradation factor 𝐹  of heat 
transfer coefficient given in [2]. The degradation factor 
𝐹  is introduced to connect the wall condensation heat 
transfer with the noncondensing gases. This factor can be 
expressed in the function of the parameters as follows: 
 
 𝐹 = 𝑎 ∙ 𝑊$%&

! ∙ 	 𝐽𝑎" ∙ 	𝑅𝑒'# (2) 
 
where 𝑊$%& : air mass fraction,	𝐽𝑎 : Jakob number, 𝑅𝑒' : 
liquid film Reynolds number. The parameters and 𝑎, 𝑏, 
𝑐, 𝑑 in are determined with experimental data. 
 
2.2 Compressive sensing 

CS is a signal processing technique to reconstruct a 
signal from far fewer measurements than required by the 
Shannon-Nyquist information criterion. We can get suc-
cessful reconstruction, although the signal is sparse, 
which means most of the elements of the frequency 

domain signal are zero or negligible.[3]  The simple form 
of CS can be described as 

 
 𝑦 = 𝐴𝑥 . (3) 

 
In this equation, the 𝑁 -dimensional sequence, 𝑦  is 

called measurement vector and formed by encoding fre-
quency domain signal 𝑥 into an	𝑀-dimensional measure-
ments through a linear transformation by the 𝑀 ×𝑁 
measurement matrix 𝐴 (where 𝑚 < 𝑛). The vector 𝑥 is a 
discrete signal and called 𝑘-sparse if 𝑥 has at most 𝑘 ≪
𝑁  nonzero entries. CS aims to reconstruct a signal 𝑥 
called 𝑘-sparse from 𝑦 = 𝐴𝑥  by solving the following 
ℓ(-minimization: 

 
 min{‖𝑥‖( ∶ 𝐴𝑥 = 𝑦}. (4) 

 
This ℓ(-minimization is a combinatorial optimization 

problem and is considered as NP-hard. On the other hand, 
and ℓ)-minimization (least-squares method) is a viable 
method. But it is known cannot find the sparse solution. 
Hence, ℓ( and ℓ)-minimization are replaced by the ℓ*-
minimization 

 min{‖𝑥‖* ∶ 𝐴𝑥 = 𝑦}. (5) 
 
With partitioning the measured and lost signals,  equa-

tion (3) can be regrouped: 
 𝐴𝑥 ∗= 𝑦	⇒ 𝐴𝑥 ∗= 𝑏, 𝐵𝑥 ∗= 𝑢. (6) 

where b is known, u is unmeasured vector, and 𝑥 ∗ is the 
optimal solution in the frequency domain. [4] 
 
2.3 Simulated annealing [1] 

SA imitates the idea of annealing in metallurgy con-
taining heating and controlled cooling of material to form 
crystalline structure with minimum energy. We can sim-
ulate the slow process of cooling to find the global opti-
mal solution. The advantage of SA is that it can reduce 
the probability of the solution being captured at local 
minima. SA can approximately find the global minimum. 
SA algorithm starts with a randomly generated initial so-
lution X at the initial temperature T and generates the ob-
jective function. Then, it generates a new random candi-
date solution vector, Y, in the neighborhood of current 
solution vector X. It judges whether to accept new solu-
tion. If the new solution vector, Y, is better, the algorithm 
accepts it and updates the current solution. Otherwise, 
the algorithm accepts Y the probability: 𝑝(∆𝐸) =
exp	(−∆𝐸 𝑇⁄ ) based on Boltzmann probability density. 
It decreases the temperature stepwise, and decides 
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whether the minimum temperature is reached. It repeats 
this process until the stopping criterion is met. 

To develop the correlation function, we try to find the 
optimal solution parameters 𝑎, 𝑏, 𝑐, 𝑑 in Equation (2) 
with the optimization problem: 
 

 min
$,!,",#

	Q𝑎 ∙ 𝑊$%&
! ∙ 	 𝐽𝑎" ∙ 	𝑅𝑒'#Q) (7) 

 
 

3. Demonstration 
 
The experimental data set is presented in Fig. 1. It con-

sists of three input data (a), (b), (c), and the output func-
tion (d). Some data set of steps 75 to 100 are removed 
intentionally, and that part is considered unmeasured 
data. We reconstructed them by using CS, and the result 
is shown in Fig. 2. Next, we applied SA to the data set 
involving reconstructed data to create optimal correlation. 

 

 
Fig. 1. Measured data by experiment (a) air mass fraction, (b) 
Jakob number, (c) Reynolds number and (d) degradation fac-

tor 
 

 
Fig. 2.  Reconstructed data set of steps 75 to 100 

 
Fig. 3 illustrates the accuracy of the developed corre-

lation using the reconstructed data. Red bullets mean the 
correlation generated with lost data included. The recon-
structed data gives an accuracy similar with original data. 
This means that the measured data is reconstructed with 
sufficient accuracy. In this figure, we can find the SA 

gives more accurate result than the previous least-
squares result given in [2]. 

 

 

Fig. 3.  Accuracy of the correlation with reconstructed data  

4. Conclusions 
 

This paper describes the process of reconstruction of 
unmeasured data using CS to determine the parameters 
of empirical correlation. Although the least-squares 
method is generally applied, the parameters were deter-
mined using the SA to overcome the ill-posedness of 
least-squares method. This can be seen clearly in the re-
sults of accuracy of correlation. The CS method provides 
accurate and robust solution similar to that of generated 
with no-lost data. The proposed method can be applied 
to many types of correlation development by expanding 
the data set or incorporating unmeasured data domain. 
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