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1. Introduction 

 
The rapid growth in computing power of the present 

times is notably aided by the heterogeneous paralleliza-
tion framework employing General Purpose Graphics 
Processing Units (GPGPUs). The reactor physics labor-
atory of Seoul National University (SNURPL) has been 
utilizing GPGPUs in direct whole core calculations 
through the method of characteristics (MOC) based 
code nTRACER and also through a continuous energy 
Monte Carlo code PRAGMA. The GPGPU version of 
nTRACER can perform a half three-dimensional (3D) 
hot-zero-power (HZP) core calculation within 4 minutes 
[1] and PRAGMA can yield nearly 15 time speedup 
over a CPU-based MC code[2]. 

Motivated by these successes, SNURPL had consid-
ered utilizing GPGPUs in the advanced pin-level two-
step core calculation through a multigroup (MG) pin-
by-pin simplified P3 (SP3) code SPHINCS [3]. It was, 
however, noted that the finite difference method (FDM) 
employing pin size meshes suffers considerable dis-
cretization error [4] while it requires the computing 
resources suitable for CPU-based parallelization [5]. In 
this regard, the development of a pin-wise nodal kernel 
for the GPU-based SP3 core calculation was initiated. 

The paper presents preliminary study results for the 
theoretical part of the development. The nodal kernel is 
in the one-node formulation because of its inherent par-
allelism and is based on the source expansion nodal 
method (SENM) [6] to facilitate steep gradients of the 
higher order flux moment. The discretization error of 
the SP3 SENM kernel was assessed by the pin-by-pin 
calculations for the VERA [7] fuel assemblies (FAs). 

 
2. One-Node SP3 Source Expansion Nodal Kernel 
 
The SP3 SENM equation was previously derived [8] 

but it was considered less appropriate for the pin-wise 
nodal kernel due to computing burden and complexity 
of the similarity transformation. Instead, each of the 
moment equation was decoupled by arranging the off-
diagonal reaction terms [3] to the sources in the right-
hand-side (RHS) and the surface partial moments were 
approximated [9, 10] to ease the formulation. 

 
2.1 Formulation of the SP3 SENM Equation 

 
The SP3 equation can be written for the summed flux 

and the 2nd moment terms as: 
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It would be worthwhile to note that not the 0th moment 
but the summed flux is added to the 2nd moment source 
term for stability of the higher moment calculation. 

Hereinafter, only the summed flux equation would be 
discussed since Eq. (1) and (2) share the same form. By 
applying the transverse integration to Eq. (1) for the u-
direction and normalizing it for the coordinate variable 
ξu defined in [-1, 1], the equation is written as: 
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where the hu is the node width and the L denotes the 
transverse leakage externally given as the quadratic 
polynomial. The group index g was omitted for brevity. 
In the SENM, the entire RHS of Eq. (3) is approximated 
by the N-th order polynomial as: 
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and Legendre polynomials are employed for the basis. 
The N is 2 for the pin-and 4 for the assembly-size node 
because the higher order source expansion is beneficial 
in accuracy for the large node but severely degenerates 
the stability for the small node. Hence, the source is 
expanded by the quadratic in the radial and the quartic 
in the axial direction for the 3D calculation. 

The source expansion coefficient (q0,i) is used to de-
termine the analytic solution of Eq. (3) given as: 
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The superscript H and P denote the homogeneous and 
particular solutions, and 
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The particular solution coefficients (c0,i) are obtained by 
the method of undetermined coefficients as: 
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The u is omitted in Eq. (6) for simplicity. The c0,0 is not 
determined by the q0,i because the node-averaged mo-
ments are considered as unknown. 

Once the homogeneous and particular solutions are 
obtained, the q0,i can be determined by the polynomial 
approximation of Eq. (5): 
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and the coefficient a0,i is obtained by using the orthogo-
nal property of Legendre polynomials. The method and 
results are detailed in Ref. [6]. 

 
2.2 Approximation of the Surface Partial Moments 

 
The homogeneous solution coefficients are deter-

mined by using the partial moments defined in terms of 
the even moments at surface and the net odd moment: 
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The 2nd moment in the partial 1st moment equation and 
the summed flux in the partial 3rd moment make diffi-
culty in formulation. For this reason, likewise the ap-
proximation in Ref. [10], Eq. (8) is truncated as: 
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It would be called as the approximated partial moment, 
contrast to the exact form in Eq. (8). Note that both Eq. 
(8) and (9) yield the same net moment as: 
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and their incoming at the reflective boundary is the 
same with the outgoing. Nonetheless, it should be aware 
that the vacuum boundary condition arises difference. 
For the boundary where the real incoming moments are 
zero, the approximated moments are [10]: 
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In Eq. (9), fraction of the surface even moment can be 
an arbitrary number and its selection has negligible 
effect on the converged solution. Therefore, the homo-
geneous coefficient A and B for either the summed flux 
or the 2nd moment ϕ is derived for the fraction μ. 

The approximated incoming partial moment at the 
right and left node boundaries are: 
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and the net surface moment is presented as: 
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By inserting the boundary condition of Eq. (12) in Eq. 
(13), the homogeneous coefficients are: 
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It should be noted that the c3 and c4 are zero for the ra-
dial direction. The A can be readily determined by the 
given incoming moments and the particular solution 
coefficients. On the contrary, the node average moment 
must be obtained beforehand to determine the B. 

By using Eq. (13), the multidimensional nodal bal-
ance equation can be written as: 
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Rearrangement of Eq. (15) gives 
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Finally, the approximated outgoing moments are: 
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3. Accuracy of the One-Node SP3 SENM 
 
Two-dimensional FA calculations were performed to 

assess the spatial discretization error of the SP3 source 
expansion nodal kernel. The assemblies have the typical 
Westinghouse 17x17-type lattice feature. The inter-
assembly gap is omitted for simplicity. The details are 
presented in Table I. The ID here indicates the VERA 
Problem 2 FA where the specifications were taken. 
 

Table I: Fuel assembly descriptions 
ID Enrichment Descriptions 
G 3.1% 24 Ag-In-Cd control rods 
H 3.1% 24 B4C control rods 
K 3.6% + 3.1% Radial zoning + 24 Pyrex 
N 3.1% 104 IFBA + 20 WABA 
O 3.1% 12 Gadolinia 
P 3.1% 24 Gadolinia 

 
The pin-homogenized 8-group constants (GCs) were 

generated by 47-group nTRACER calculations [11]. 
The flat-source MOC solver was employed with the 
transport corrected P0 option and the ray parameters of 
a 0.01 cm ray spacing and 32 azimuthal and 4 polar 
angles in the octant solid sphere. The energy boundaries 
of the condensed group are given in Ref. [4]. 

The pin-by-pin SP3 calculations were carried out by 
the FDM and the SENM solvers. The FDM was em-
ployed to obtain the very fine-mesh reference solutions. 
Note that the FDM solutions based on 4,096 (64x64) 
meshes per pin were regarded as the true. The nodal 
expansion method (NEM) based on Ref. [9] and [10] 
was employed for comparison with SENM. All the cal-
culation results do not incorporate the aid of equiva-
lence factors (EFs) in order to observe only the error 
reduction by mesh refinement. Note that the paper focus 
only on the reactivity error versus the mesh refinement, 
because the pin-by-pin nodal solvers are not well opti-
mized yet so presentation of the computational time may 
cause a misleading, and the error reduction of the as-
sembly-and pin-wise reaction rates was highly similar 
with that of the reactivity. 

 
Table II: Reactivity error (pcm) of the pin-by-pin solvers 

ID Ref. 
k-inf 

FDM   NEM SENM 
 1x1 2x2 8x8 1x1 1x1

G 0.817349 6350.3 2399.1 200.6 141.8 138.9
H 0.748805 9020.7 3430.2 288.2 219.7 216.0
K 1.008013 1863.4 668.3 53.3 30.0 29.2
N 0.862269 1370.0 461.6 35.0 8.4 7.7
O 1.032027 2035.5 827.5 75.8 31.7 29.5
P 0.900619 4647.9 1900.6 176.2 89.4 84.3
 

Table II presents the reactivity error. Due to the sig-
nificantly heterogeneous configurations including the 
control rods and burnable absorbers, the FDM yielded 
severe discretization error. In case of the H, for example, 
the error was about 9,021 pcm with the 1x1 and 3,430 
pcm with the 2x2 meshes. On the other hand, the nodal 
methods successfully reduced the error. Although each 
pin was treated as a mesh, the error of NEM and SENM 
was about 220 pcm and 216 pcm for the H. The nodal 
solutions were even better than the FDM 8x8 mesh so-
lutions regardless of the cases. 

The error reduction of G and H by the mesh refine-
ment are presented in Fig. 1. The pin sub-meshes were 
increased up to the 32x32 for the FDM and the 4x4 for 
the nodal. The results confirmed that the agreement of 
nodal solvers was maintained in the fine mesh. In con-
clusion, it can be said that the nodal is nearly about 8 
times more accurate than the FDM. 

 

 
Fig. 1. Reduction of the discretization error by the mesh 

refinement for the G (left) and H (right) assemblies 
 
It is known that the SENM can yield better accuracy 

than polynomial-based nodal methods like the NEM, 
due to the hyperbolic functions employed for the flux 
expansion. As shown in Table II and Fig. 1, however, 
the difference between the SENM and the NEM was not 
notable in the pin-by-pin calculations. Reduction of the 
source expansion order for the pin-size node was con-
sidered as the reason, because it was clear that the quad-
ratic approximation is less accurate than the quartic. 
Thus, test calculations with the quartic source were per-
formed and the results are in Table III. 

In contrast to the assumption, the source expansion 
order negligibly changed the results while degenerated 
the stability; the calculations with the 4th order source 
and the 4x4 meshes together were all diverged. It is be-
cause the homogeneous solution coefficients in Eq. (14) 
are directly determined by the 3rd and 4th order source 
coefficient in case of the fine-mesh calculation and 
those are fluctuating until the solution is converged. 
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Table III: Reactivity error (pcm) of the pin-wise SENM kernel 

with the different source expansion order 
ID Exp. Ord. 1x1 2x2 4x4 
G 2nd 138.9 54.3 14.4 
 4th 138.1 54.1 N/A 

H 2nd 216.0 94.9 26.4 
 4th 215.0 94.7 N/A 

K 2nd 29.2 5.7 1.0 
 4th 29.0 5.7 N/A 

N 2nd 7.7 2.9 0.8 
 4th 7.6 2.9 N/A 

O 2nd 29.5 14.5 4.4 
 4th 28.6 14.3 N/A 

P 2nd 84.3 34.6 10.5 
 4th 82.3 33.9 N/A 

 
4. Conclusions 

 
The one-node SP3 nodal kernel for the GPU-based 

pin-by-pin core analysis was formulated in this work. 
Each of the even moment equation was decoupled by 
arranging the off-diagonal terms of the matrix equation 
to the source, and the surface odd moments were ap-
proximated to ease the formulation. The order of source 
expansion in the radial directions was truncated to the 
2nd to improve the stability. It was shown that the trun-
cation negligibly changed the solution. 

Preliminary test calculations were performed for two-
dimensional fuel assemblies based on the VERA BOC 
HZP fuel lattice configurations. Any of the equivalence 
factors were not incorporated in the test to observe the 
reduction of discretization error by the mesh refinement. 
Accuracy of the SENM was assessed by comparison 
with the FDM reference solutions based on the very 
fine-meshes. The test results revealed that the SENM is 
nearly about 8 times more accurate than the FDM, in 
terms of the discretization error. 

It was also notable that the NEM solutions were very 
close to the SENM. It means the hyperbolic functions 
which require significant computing cost might not be 
much-needed for the radial pin-by-pin flux expansion. 
Thus, the future work would focus on the NEM vs. 
SENM comparison for problems with more realistic and 
challenging features, and the radial NEM and the axial 
SENM combination which might reduce the computing 
cost while retaining the accuracy. 
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