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1. INTRODUCTION 

 
The purpose of a containment spray system is to 

remove fission products in containment atmosphere. 

The function of spray system is dependent of the spray 

droplet shapes. Specially the motion behavior is similar 

to the pattern of ellipse objects or rain droplets. In this 

study, the droplet model is introduced and made to take 

Monte-Carlo simulation using ellipse equations. The 

basic concept is based on the Lee’s study, which has 

carried out by Lee et al of KHNP (Korea Hydro Nuclear 

Power) [1]. In this study, to promote and apply Lee’s 

model, the dose estimation for LOCA is introduced [1-

3].  The effect of spray droplet surface area is focused 

in this study. The mathematical equations are shown 

and used to calculate the LOCA dose estimation. The 

results are used to discuss the relation between the 

surface area of spray droplet and the LOCA dose effect. 

Also, the calculated results of the droplet surface area 

model are compared with Clift’s experimental study in 

non-sphere in falling mechanics [2]. The surface of 

spray droplets is main parameter to make the droplet 

shape. In this study, the efficient calculation method is 

achieved by Monte-Carlo methodology and the results 

are applied in the LOCA dose estimation[1-2].  

 

2. METHODOLOGY 

 

In this section, a three dimensional ellipsoid surface 

area is derived and random variable is selected. Directly, 

three-dimensional spray droplets shape is simulated.  

 

2.1 Surface area of spray droplet in three dimensions 

 

Spray droplet shape is similar to flat-ellipsoid and 

strongly dependent to on the eccentricity e.  

The form and the surface of droplets are strongly 

affected from the eccentricity e, which is the ratio 

between x-axis and y-axis or z-axis. 

Generally, for the case in which two axes are equal to 

b=c, the surface is generated by rotation around the x-

axis of the half-ellipse of equation (1) with Y>0.  
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a2 +
Y2
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Z2
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On that half-ellipse, dy/dx = -b2x/(a2y), and hence the 

ellipse surface area ratio of the spheroid is written as 

below: 
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a4y2 dx =
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0
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Here, equation (3) is changed into equation (4) using 

replace process and some integration process (See 

Appendix A)[1]. 
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Here, δ is eccentricity. δ is random variable, which is 

ranged between 0 and 1.   
 

2.2 Judgement Equation of Ellipse Droplet Shape  
  

In previous section, the surface area ratio against 

spherical volume is introduced as the simple random 

variable form for Monte-Carlo calculation. But the 

surface area is valid in the only ellipse condition. 

Indeed, spray droplet is really not spherical shape but 

ellipse shape. Because of that, a judgement equation is 

needed to calculate the ellipse shape of spray droplet.  

The judgement equation is written as equation (5) as 

below: 

 

a x2 +  2b xy + c y2 + 2 dx + 2 fy + g = 0           (5) 

Here, the shape of ellipse must be satisfied in condition 

of equation (6) and equation (7) (See Appendix B)[1].  

 

∆= |
a b d
d c f
d f g

| , J =  |
a b
b c

| , I = a + c             (6) 

 

∆≠ 0,    J > 0,
∆

I
< 0, 𝑎 ≠ 𝑐,   𝐽 = 𝑎𝑐 − b2 ≠ 0 (7) 

 

Where a, b, c, d, e, f and g are random variables and 

their range are from 0 to 1. 

From equation (5) and equation (6), ellipse semi-axis is 

calculated such as a′ and b′. 

And then, the a′ and b′ is calculated as eccentricity. 

Also, equation (5) is written from equation (1) in 

spreading each term of equation (1).  

 

2.3 Determination of Surface Area in Changed 

Coordinate System.  

 

 Except for section 2.1 and section 2.2, the other 

equation is introduced to determine the surface area of 

spray droplets. 

In the section 2.1 and 2.2, an arbitrary surface area is 

calculated in the case of ellipse shape. In other wise, the 

refined equations are generated, in changing  (x, y, z) 

coordinate system into (φ, θ) coordinate system. 



   

    

 

Here,  cosθ=z/c.  

 
x2

a2 +
y2

b2 = sin2θ                                                (8)   

 

Equation (8) can be changed into equation (9), using 

some integral process (See Appendix C)[1]. 

A = (1 −
1

2

p

3
π −

1

2

p2

3

π∙1∙3

2∙2∙4
−

1

16

p3

7

π∙1∙3∙5

2∙2∙4∙6
−

5

128

p4

9

π∙1∙3∙5∙7

2∙2∙4∙6∙8
−

7

256

p5

11

π∙1∙3∙5∙7∙9

2∙2∙4∙6∙8∙10
⋯ ⋯ )                                         (9) 

 

Here, p is random variable and its range is from 0 to 1. 

 

2.4 Monte-Carlo Simulation of Droplet Surface Area  

 

The distribution function of droplet size is known as the 

log-normal distribution shape. Clift’s experiment is 

used to simulate the droplet ellipse surface area. The 

function of surface area ratio of spherical volume is 

made by equation (9) using random variable p.  Droplet 

size and volume is generated by log-normal random 

distribution. Monte-Carlo strategy is written as below: 

Step 1 : droplet size is selected. 

Step 2 : surface area ratio of spherical volume 

Step 3: matching between droplet size and spherical 

volume 

Step 4 : spherical volume multiply to surface area ratio 

Step 5: surface area determination and efficiency 

determination. 

 

2.5 Dose Estimation  

 

Fig.1 shows the frame of LOCA modeling for dose 

estimation.  

Dotted lines are considered for the sump and 

containment purge model. Solid lines are considered for 

the containment leakage model.  

In the environment component of Fig.1, the dispersion 

behavior of fission products is simulated. This behavior 

can be simulated by the offsite dispersion factor from 

PAVAN code calculation.  

 

 
Fig. 1 LOCA modeling concept in RADTRAD code 

   

 

3. RESULTS AND DISCUSSIONS 

 

3.1 Monte-Carlo Simulation Results.  

 

From equations (9), the surface area ratio of spherical 

volume is generated as simple form.  

Fig.2 shows the surface area ratio of the spherical 

volume of spray droplets using the equation (9). In Fig. 

2, 3 and 4, this study is compared with Clift’s 

experimental results in the case of the spray droplet 

surface ratio, the spherical volume, the ellipse surface 

area and iodine removal efficiency. This work results is 

in good agreement with Clift’s experimental results.  

From Fig2, Fig 3, Fig4 and Fig 5, we know that Monte 

Carlo simulation of this study is very similar to the 

results of experiments. 

 

 
Fig. 2 Surface area ratio against spherical volume 

comparing with other study 
 

 
Fig. 3 Spherical volume and droplet size 
 

Generally, Ellipse surface area is expressed by 

(
8π2a3

2πaE2/3). 

This value is use as the aerosol capture reverse 

efficiency.  

From this relation, the result of Fig. 4 is generated as 

the fission products removal efficiency. This value is 

used as a input value for the calculation of LOCA dose.  

Fig.5 is the iodine removal efficiency (fission product 

removal efficiency). This results of Fig.5 is calculated 

from taking the reverse value of the ellipse surface area 

and multiplying correction constant to the reverse value.     
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Fig. 4 Ellipse surface area and droplet size 
 

 
Fig. 5 Fission-products removal efficiency from ellipse 

surface area 

 

3.2 LOCA Dose Estimation  

 

From Fig 5, LOCA dose is carried out. Table 1 shows 

key parameters of the calculation results. From Monte-

Carlo simulation, LOCA dose estimation results are 

shown in Table2.  In Fig. 6, this work is compared with 

Clifft’s experiment work. Fig. 6 shows the conformity 

between the Monte-Carlo simulation of this work and 

the experimental work. This work is very similar to 

other study.   

 

Table1. Key parameters for LOCA dose (OPR 1000) 

Input Calculated results 
Containment 

leakage flow rate 

(Vol% per day) 

Containment leakage  

- 0 ~ 24 hours : 0.1 

- 24 ~ 720 hours : 0.05 

Removal rate or 

Decontamination 

Factors 

Natural deposition removal rate 

- Unsprayed region : 5.50 

- Sprayed region : 12.5 

Iodine Decontamination Factor 

- Iodine by deposition : 100 

Offsite 

Dispersion 

Factors 

(sec/cubic 

meter) 

EAB : 4.991e-04 (0~2hours)  

LPZ :  3.001e-05(0~8hours) 

2.103e-05(8~24hours) 

1.030e-05(24~96hours) 

3.463-06(96~720hours) 

Iodine removal 

efficiency 

Droplet removal efficiency : 0.001 ~0.79  

Droplet distribution : log-normal  

 

Table2. Calculation results of LOCA analysis 

Location Results of LOCA analysis 

EAB : TEDE  

(rem) 

Containment leakage 

model  :12.2 

Purge leakage : 0.3 

Sump leakage : 2.3 

Total : 14.8 

LPZ : TEDE 

(rem) 

Containment leakage model  :9.3 

Purge leakage : 0.2 

Sump leakage : 2.1 

Total : 11.6 

Dose Criteria : TEDE 

(RG 1.183) (rem) 
EAB & LPZ : 25  

 

 
Fig. 6 Comparison between this work and experiment 

works 

 

4. CONCLUSIONS 

The fission products removal simulation based on the 

spray droplet surface and eccentricity is carried out. 

From the simulation, LOCA dose is estimated inserting 

iodine removal efficiency(Table2). In this work, Monte-

Carlo simulation results are in good agreement with 

Clift’s experiment (Fig.4 and Fig.5). 

The difference between the experimental results and 

Monte-Carlo simulation results is within 0.25%(Fig.6). 

And LOCA calculation results show the safety 

margin of more than 50%.  
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Appendix A 

Generally, for the case in which two axes are equal to 

b=c, the surface area ratio against spherical volume is 

generated by rotation around the x-axis of the half-

ellipse of equation (1) with Y>0.  

 
X2

a2 +
Y2

b2 +
Z2

c2 = 1                                                    (1) 

 

On that half-ellipse, dy/dx = -b2x/(a2y), and hence the 

surface area of the spheroid is written as below: 

 

A = 2 ∫ 2πy√1 +
b4x2

a4y2
dx =

a

0
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A = 4πb ∫ √1 −
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a
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A = 4πab ∫ √1 − (1 −
b2

a2) u2 du
1

0
                        (4)          

 

A = 4πab ∫ √1 − δu2 du
1

0
                                     (5) 

   Where, u=x/a and δ=1 −
b2

a2, which is used for replace 

integral. 

Where, this equation can be selected by three options as 

below: 

Option1: a>b 

A = 2πb (a ×
arcsin√δ

√δ
+ b)                                  (6) 

 

Option2: a=b 

A = 2πb(a + b) = 4πa2                                      (7) 

 

Option3: a<b 

A = 2πb (a ×
arcsinh√−δ

√−δ
+ b)                              (8) 

 

Here, due to the falling spray droplet is crashed so the 

option1 is selected. 

Continuously, option 1 is going on calculating the 

surface area of ellipse spray droplets. 

Applying Power series into equation (6), it is changed 

as below: 
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Integrating equation (12), the results is written as 

equation (13). 
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Here, equation (13) is resulted from Power series of  
arcsin√δ

√δ
 . 

 

Appendix B 

a x2 +  2b xy + c y2 + 2 dx + 2 fy + g = 0           (14) 

Here, the shape of ellipse must be satisfied in condition 

of equation (15) and equation (16)[1].  

 

∆= |
a b d
d c f
d f g

| , J =  |
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b c

| , I = a + c             (15) 

 

∆≠ 0,    J > 0,
∆

I
< 0, 𝑎 ≠ 𝑐,   𝐽 = 𝑎𝑐 − b2 ≠ 0 (16) 

  

The center of the ellipse (x0, y0) is given by  

 

x0 =
cd−bf

b2−ac
          y0 =

af−bd

b2−ac
                                 (17) 

 

The semi-axes lengths are below [1]: 

 

a′ = √
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                         (18) 
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Appendix C 

If (x, y, z) coordinate system is changed to ( φ , θ ) 

coordinate system,  cosθ=z/c.  

 
x2

a2 +
y2

b2 = sin2θ                                                (20)   

 
x2

(a sinθ)2 +
y2

(b sinθ)2 = 1                                      (21)                                             

 

Letting cosφ=y/(b sinθ), so that sinφ=x/(a sinθ). 

 

That is written as below: 

X=a sinθsinφ         , y=b sinθcosφ                 (22)   

 

Using the differential factor of (22), (22) is changed 

into (23). 

 

(dxdy)=ab sinθcosθdθdφ                                (23) 

 

S = ab ∫ ∫ sinθ√1 − p2sinθdθdφ
π/2

θ=0

π/2

φ=0
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Here, equation (24) is modified to reflect the previous 

section 2.2 using equation (5) and equation(10). 

 

Using the Power series of parameter p, we can integrate 

for θ from 0 to π/2. 
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Power series for term (24) is generated as below: 
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Using equation (25), surface area of spray droplet shape   

can be expressed into simple form as below:  
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