
   

     

 

 

Preliminary Simulation on Jet Breakup Experiment Using High Accuracy Kernel 

Correction Scheme for Smoothed Particle Hydrodynamics 

 
Hae Yoon Choia, Eung Soo Kima* 

a Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, South Korea 
*Corresponding author: kes7741@snu.ac.kr 

 

1. Introduction 

 
At severe accident in light water reactor, the molten 

core materials (corium) can be erupted into water pool 

which exists in-vessel and ex-vessel. In this process, the 

fuel-coolant interaction (FCI) occurs and much debris 

can be formed and fragmented. (Fig. 1) Enormous steam 

could be generated in the pool due to the hot core melts, 

which may lead to steam explosion. Since these series of 

processes are influenced by the fragmented debris and 

the vapor produced in the pool, the evaluation of the two 

factors is important for the nuclear safety perspective. [1]  

When simulating the multi-fluid components like FCI 

phenomenon using Smoothed Particle Hydrodynamics 

(SPH) code, numerical errors occur in the kernel 

approximation at the interface or free surface of flows. 

Several correction methods to resolve the approximation 

error have been proposed in the past years, but there are 

disadvantages of high cost calculation when calculating 

a multi-dimensional inverse matrix, and an instability 

problem when matrix is ill-posed.  

Therefore, this study presented a method which can 

easily correct a kernel derivative for computational 

efficiency and cost, and FCI phenomenon simulation was 

carried out using the particle-based simulation code, 

SOPHIA, to which the new correction method was 

applied. And the simulation results were compared with 

those of experiment. 

 

 
Fig 1. A schematic of FCI phenomenon 

 

2. SPH Numerical Method 

 

2.1 SPH basics 

 

The SPH method is one of the Lagrangian analysis 

methods, which analyzes the fluid flows by calculating 

the motion of individual particles. The particles have 

each property and are calculated through the weight 

function over the neighboring particles. The weight 

function is defined as a kernel function which has a 

smoothing length. This SPH method has advantages in 

handling free surface flow, multi-fluid (phase) flow, and 

high deformable geometry due to its Lagrangian nature.  

The SPH approximation is performed by discretizing 

the kernel function which has the characteristics of the 

delta function. 

 

𝑓(𝑟𝑖) = ∑
𝑚𝑗

𝜌𝑗
𝑓𝑗𝑊(𝑟𝑖 − 𝑟𝑗)𝑗   (1) 

 

𝑓𝑖  is a function at the position 𝑖, 𝑊(𝑟𝑖 − 𝑟𝑗) is a kernel 

function, 𝑗 is a neighboring particle within the smoothing 

length, and 𝑚, 𝜌 means mass and density, respectively. 

The first derivative of the field function 𝑓(𝑟)  is 

expressed as a function of kernel derivatives for all the 

particles in the support domain of particle 𝑖. [2]  

 

𝛻𝑓(𝑟𝑖) = ∑
𝑚𝑗

𝜌𝑗
𝑓𝑗𝛻𝑊(𝑟𝑖 − 𝑟𝑗)𝑗   (2) 

 

2.2 Governing equations 

  

The SPH method basically satisfies the conservation 

of mass and momentum, and can be expressed in the 

form of equations (3) and (4). There are two approaches 

for density calculation, the first is mass summation and 

the second is continuity equation. In this study, mass 

summation is used.  

 
𝑑𝜌

𝑑𝑡
= −𝜌𝛻 ∙ �⃑�    (3) 

 
𝑑�⃑⃑� 

𝑑𝑡
= −

1

𝜌
𝛻𝑃 +

𝜇

𝜌
𝛻2�⃑� + 𝑔   (4) 

 

�⃑� , 𝑃, 𝜇, 𝑔  denote velocity field, pressure, dynamic 

viscosity, and gravitational constant, respectively. 

Table 1. shows the SPH expression of the governing 

equations. In the general SPH method, the calculation is 

carried out assuming weak compressibility of the fluid, 

so Tait equation is used for equation of state (EOS). 

 

2.3 Multi-fluid models 

 

In multi-fluid calculation, a discontinuity of physical 

properties occurs at the fluid interface. Since the SPH 

pressure force calculation is a function of density, large 

density difference near the boundary cause non-physical 

pressure force.  
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Table 1. SPH Formulations 

Mass Conservation 

Mass summation 

𝜌𝑖 = ∑𝑚𝑗𝑊𝑖𝑗

𝑗

 

Continuity equation 

(
𝑑𝜌

𝑑𝑡
)
𝑖
= 𝜌𝑖 ∑

𝑚𝑗

𝜌𝑗

(𝑢𝑖⃑⃑  ⃑ − 𝑢𝑗⃑⃑  ⃑) ∙ 𝛻𝑊𝑖𝑗

𝑗

 

Momentum Conservation 

Pressure force 

(
𝑑�⃑� 

𝑑𝑡
)

𝑖

= ∑−
𝑚𝑗

𝜌𝑖𝜌𝑗

(𝑃𝑗 + 𝑃𝑖)𝛻𝑊𝑖𝑗

𝑗

 

Viscous force 

(
𝑑�⃑� 

𝑑𝑡
)

𝑖

= ∑−
4𝑚𝑗

𝜌𝑖𝜌𝑗

𝜇𝑖𝜇𝑗

𝜇𝑖 + 𝜇𝑗

𝑟𝑖𝑗⃑⃑  ⃑ ∙ 𝛻𝑊𝑖𝑗

𝑟𝑖𝑗
2 + 𝜀2

(𝑢𝑖⃑⃑  ⃑ − 𝑢𝑗⃑⃑  ⃑)

𝑗

 

Equation of State 

𝑃 =
𝑐0
2𝜌0

𝛾
[(

𝜌

𝜌0

)
𝛾

− 1] 

 

Therefore, a normalized-density formulation is 

introduced to ensure stability by replacing the density 

(𝜌) with the normalized density(𝜌/𝜌0). 

 

(
𝜌

𝜌0
)
𝑖
= ∑

𝑚𝑗

𝜌0,𝑗
𝑊𝑖𝑗𝑗   (5) 

 
𝑑

𝑑𝑡
(

𝜌

𝜌0
)
𝑖
= −(

𝜌𝑖

𝜌0,𝑖
)∑

𝑚𝑗

𝜌𝑗
(𝑢𝑖⃑⃑  ⃑ − 𝑢𝑗⃑⃑  ⃑) ∙ 𝛻𝑊𝑖𝑗𝑗  (6) 

 

Since not only density, but also viscosity and heat 

transfer coefficient are discontinuous at the interface, the 

thermal conductivity in the conduction equation is also 

applied by transforming the shape as in the previous 

viscous force calculation formulation.   

 

(
𝑑ℎ

𝑑𝑡
)
𝑖
= ∑

4𝑚𝑗

𝜌𝑖𝜌𝑗

𝑘𝑖𝑘𝑗

𝑘𝑖+𝑘𝑗

𝑟𝑖𝑗⃑⃑⃑⃑  ⃑∙𝛻𝑊𝑖𝑗

𝑟𝑖𝑗
2⃑⃑⃑⃑  ⃑+𝜀2

(𝑇𝑖 − 𝑇𝑗)𝑗  (7) 

 

 

3. Simplified Kernel Gradient Correction 

 

For the accurate SPH approximation, the spatial 

integral of the kernel function should be 1.  

 

∫ 𝑊 (𝑟 − 𝑟′, ℎ) 𝑑𝛺
𝛺

= 1  (8) 

 

∑
𝑚𝑗

𝜌𝑗
𝑊(𝑟𝑖 − 𝑟𝑗)𝑗 = 1  (9) 

 

The above equations are referred as unity condition, 

and generally satisfied inside region of the fluid for ideal 

conditions. However, this condition is not satisfied near 

the boundary where the particle distribution is non-

uniform or the analysis area is cut off. (Fig. 2) This 

causes not only the degradation of calculation accuracy, 

but also numerical instability. [3] And, the errors also 

occur in the SPH approximation of the kernel derivative. 

In order to resolve these errors, several studies have been 

carried out in the past, and various kernel gradient 

correction (KGC) methods have been proposed. A brief 

description of KGC method is given in the next section. 

 

 
Fig 2. Truncated and non-uniform particle distribution 

 

3.1 Conventional kernel gradient correction 

 

Chen (2000) proposed a corrected SPH (CSPM) from 

Taylor series. CSPM provides better results than 

conventional SPH method by solving particle deficiency 

problems near the boundary. [4] In the similar way, Liu 

et al (2006) proposed a finite particle method (FPM), 

which is known to have greater accuracy due to its 

simultaneous calculations on the value of the function 

itself and the gradient term. [5] Because the principal 

component direction plays a major role in the correction, 

decoupled FPM (DFPM) which considers only the 

principal component of FPM matrix was proposed by 

Zhang (2018). [6] On the other hand, Huang (2016) 

proposed a Kernel Gradient Free (KGF) method by 

excluding the kernel gradient itself that causes errors. [7] 

Table 2. shows the expression of several kernel gradient 

correction methods. 

The above methods improves the results in the vicinity 

of the interface by correcting the particle inconsistency, 

however, it is necessary to perform multi-dimensional 

inverse matrix calculation, and in the case of ill-posed, 

there is a problem that the inverse matrix does not exist, 

so the calculation cost can be high and somewhat 

inefficient. 

 

3.2 Simplified kernel gradient correction 

 

Therefore, a simplified correction method was 

introduced to perform the calculation more efficiently. 

Using the central difference approximation from Taylor 

series, the eqn. (10) can be derived.   

 

(
𝜕𝑓

𝜕𝑥
)
𝑖
≈

𝑓(𝑖𝑅)−𝑓(𝑖𝐿)

2∆𝑥
   

           =
1

2∆𝑥
[∑

𝑚𝑗

𝜌𝑗
𝑓𝑗𝑊𝑖+∆𝑥𝑗 − ∑

𝑚𝑗

𝜌𝑗
𝑓𝑗𝑊𝑖−∆𝑥𝑗 ]           (10) 

 

𝑖𝑅 , 𝑖𝐿  indicate the position where 𝑖 particle moved very 

slightly in the positive/negative direction.  
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Table 2.The several kernel gradient correction methods 

Correction method Matrix expression 

CSPM [

𝑓𝑥,𝑖

𝑓𝑦,𝑖

𝑓𝑧,𝑖

] =

[
 
 
 
 ∑ (𝑥𝑗−𝑥𝑖)𝑊𝑥

𝑚𝑗

𝜌𝑗
𝑗 ∑ (𝑦𝑗−𝑦𝑖)𝑊𝑥

𝑚𝑗

𝜌𝑗
𝑗 ∑ (𝑧𝑗−𝑧𝑖)𝑊𝑥

𝑚𝑗

𝜌𝑗
𝑗

∑ (𝑥𝑗−𝑥𝑖)𝑊𝑦

𝑚𝑗

𝜌𝑗
𝑗 ∑ (𝑦𝑗−𝑦𝑖)𝑊𝑦

𝑚𝑗

𝜌𝑗
𝑗 ∑ (𝑧𝑗−𝑧𝑖)𝑊𝑦

𝑚𝑗

𝜌𝑗
𝑗

∑ (𝑥𝑗−𝑥𝑖)𝑊𝑧

𝑚𝑗

𝜌𝑗
𝑗 ∑ (𝑦𝑗−𝑦𝑖)𝑊𝑧

𝑚𝑗

𝜌𝑗
𝑗 ∑ (𝑧𝑗−𝑧𝑖)𝑊𝑧

𝑚𝑗

𝜌𝑗
𝑗 ]

 
 
 
 
−1

[
 
 
 
 ∑ [𝑓𝑗−𝑓𝑖]𝑊𝑥

𝑚𝑗

𝜌𝑗
𝑗

∑ [𝑓𝑗−𝑓𝑖]𝑊𝑦

𝑚𝑗

𝜌𝑗
𝑗

∑ [𝑓𝑗−𝑓𝑖]𝑊𝑧

𝑚𝑗

𝜌𝑗
𝑗 ]

 
 
 
 

  

FPM 
[
 
 
 
𝑓𝑖
𝑓𝑥,𝑖

𝑓𝑦,𝑖

𝑓𝑧,𝑖 ]
 
 
 

 =

[
 
 
 
 
 
 ∑ 𝑊

𝑚𝑗

𝜌𝑗
𝑗 ∑ (𝑥𝑗 − 𝑥𝑖)𝑊

𝑚𝑗

𝜌𝑗
𝑗 ∑ (𝑦𝑗 − 𝑦𝑖)𝑊 

𝑚𝑗

𝜌𝑗
𝑗 ∑ (𝑧𝑗 − 𝑧𝑖)𝑊 

𝑚𝑗

𝜌𝑗
𝑗

∑ 𝑊𝑥

𝑚𝑗

𝜌𝑗
𝑗

∑ 𝑊𝑦

𝑚𝑗

𝜌𝑗
𝑗

∑ 𝑊𝑧

𝑚𝑗

𝜌𝑗
𝑗

∑ (𝑥𝑗 − 𝑥𝑖)𝑊𝑥

𝑚𝑗

𝜌𝑗
𝑗

∑ (𝑥𝑗 − 𝑥𝑖)𝑊𝑦

𝑚𝑗

𝜌𝑗
𝑗

∑ (𝑥𝑗 − 𝑥𝑖)𝑊𝑧

𝑚𝑗

𝜌𝑗
𝑗

∑ (𝑦𝑗 − 𝑦𝑖)𝑊𝑥

𝑚𝑗

𝜌𝑗
𝑗

∑ (𝑦𝑗 − 𝑦𝑖)𝑊𝑦

𝑚𝑗

𝜌𝑗
𝑗

∑ (𝑦𝑗 − 𝑦𝑖)𝑊𝑧

𝑚𝑗

𝜌𝑗
𝑗

∑ (𝑧𝑗 − 𝑧𝑖)𝑊𝑥

𝑚𝑗

𝜌𝑗
𝑗

∑ (𝑧𝑗 − 𝑧𝑖)𝑊𝑦

𝑚𝑗

𝜌𝑗
𝑗

∑ (𝑧𝑗 − 𝑧𝑖)𝑊𝑧

𝑚𝑗

𝜌𝑗
𝑗 ]

 
 
 
 
 
 
−1

 

[
 
 
 
 
 
 ∑ 𝑓𝑗𝑊

𝑚𝑗

𝜌𝑗
𝑗

∑ 𝑓𝑗𝑊𝑥

𝑚𝑗

𝜌𝑗
𝑗

∑ 𝑓𝑗𝑊𝑦

𝑚𝑗

𝜌𝑗
𝑗

∑ 𝑓𝑗𝑊𝑧

𝑚𝑗

𝜌𝑗
𝑗 ]

 
 
 
 
 
 

   

DFPM  

[
 
 
 
𝑓𝑖
𝑓𝑥,𝑖

𝑓𝑦,𝑖

𝑓𝑧,𝑖 ]
 
 
 

=

[
 
 
 
 
 
 ∑ 𝑊

𝑚𝑗

𝜌𝑗
𝑗 0 0 0

0 ∑ (𝑥𝑗 − 𝑥𝑖)𝑊𝑥

𝑚𝑗

𝜌𝑗
𝑗 0 0

0 0 ∑ (𝑦𝑗 − 𝑦𝑖)𝑊𝑦

𝑚𝑗

𝜌𝑗
𝑗 0

0 0 0 ∑ (𝑧𝑗 − 𝑧𝑖)𝑊𝑧

𝑚𝑗

𝜌𝑗
𝑗 ]

 
 
 
 
 
 
−1

 

[
 
 
 
 
 
 ∑ 𝑓𝑗𝑊

𝑚𝑗

𝜌𝑗
𝑗

∑ 𝑓𝑗𝑊𝑥

𝑚𝑗

𝜌𝑗
𝑗

∑ 𝑓𝑗𝑊𝑦

𝑚𝑗

𝜌𝑗
𝑗

∑ 𝑓𝑗𝑊𝑧

𝑚𝑗

𝜌𝑗
𝑗 ]

 
 
 
 
 
 

=  

[
 
 
 
 
 
 
 (∑ 𝑓𝑗𝑊

𝑚𝑗

𝜌𝑗
𝑗 ) / (∑ 𝑊

𝑚𝑗

𝜌𝑗
𝑗 )

(∑ [𝑓𝑗 − 𝑓𝑖]𝑊𝑥

𝑚𝑗

𝜌𝑗
𝑗 ) / (∑ (𝑥𝑗 − 𝑥𝑖)𝑊𝑥

𝑚𝑗

𝜌𝑗
𝑗 )

(∑ [𝑓𝑗 − 𝑓𝑖]𝑊𝑦

𝑚𝑗

𝜌𝑗
𝑗 ) / (∑ (𝑦𝑗 − 𝑦𝑖)𝑊𝑦

𝑚𝑗

𝜌𝑗
𝑗 )

(∑ [𝑓𝑗 − 𝑓𝑖]𝑊𝑧

𝑚𝑗

𝜌𝑗
𝑗 ) / (∑ (𝑧𝑗 − 𝑧𝑖)𝑊𝑧

𝑚𝑗

𝜌𝑗
𝑗 )

]
 
 
 
 
 
 
 

    

KGF           

[
 
 
 
𝑓𝑖
𝑓𝑥,𝑖

𝑓𝑦,𝑖

𝑓𝑧,𝑖 ]
 
 
 

 =

[
 
 
 
 
 
 ∑ 𝑊

𝑚𝑗

𝜌𝑗
𝑗 ∑ (𝑥𝑗 − 𝑥𝑖)𝑊 

𝑚𝑗

𝜌𝑗
𝑗 ∑ (𝑦𝑗 − 𝑦𝑖)𝑊 

𝑚𝑗

𝜌𝑗
𝑗 ∑ (𝑧𝑗 − 𝑧𝑖)𝑊 

𝑚𝑗

𝜌𝑗
𝑗

∑ (𝑥𝑗 − 𝑥𝑖)𝑊
𝑚𝑗

𝜌𝑗
𝑗 ∑ (𝑥𝑗 − 𝑥𝑖)(𝑥𝑗 − 𝑥𝑖)𝑊 

𝑚𝑗

𝜌𝑗
𝑗 ∑ (𝑦𝑗 − 𝑦𝑖)(𝑥𝑗 − 𝑥𝑖)𝑊 

𝑚𝑗

𝜌𝑗
𝑗 ∑ (𝑧𝑗 − 𝑧𝑖)(𝑥𝑗 − 𝑥𝑖)𝑊 

𝑚𝑗

𝜌𝑗
𝑗

∑ (𝑦𝑗 − 𝑦𝑖)𝑊
𝑚𝑗

𝜌𝑗
𝑗 ∑ (𝑥𝑗 − 𝑥𝑖)(𝑦𝑗 − 𝑦𝑖)𝑊 

𝑚𝑗

𝜌𝑗
𝑗 ∑ (𝑦𝑗 − 𝑦𝑖)(𝑦𝑗 − 𝑦𝑖)𝑊

𝑚𝑗

𝜌𝑗
𝑗 ∑ (𝑧𝑗 − 𝑧𝑖)(𝑦𝑗 − 𝑦𝑖)𝑊 

𝑚𝑗

𝜌𝑗
𝑗

∑ (𝑧𝑗 −†𝑖)𝑊
𝑚𝑗

𝜌𝑗
𝑗 ∑ (𝑥𝑗 − 𝑥𝑖)(𝑧𝑗 − 𝑧𝑖)𝑊 

𝑚𝑗

𝜌𝑗
𝑗 ∑ (𝑦𝑗 − 𝑦𝑖)(𝑧𝑗 − 𝑧𝑖)𝑊 

𝑚𝑗

𝜌𝑗
𝑗 ∑ (𝑧𝑗 − 𝑧𝑖)(𝑧𝑗 − 𝑧𝑖)𝑊 

𝑚𝑗

𝜌𝑗
𝑗 ]

 
 
 
 
 
 
−1

 

[
 
 
 
 
 
 ∑ 𝑓𝑗𝑊

𝑚𝑗

𝜌𝑗
𝑗

∑ 𝑓𝑗(𝑥𝑗 − 𝑥𝑖)𝑊
𝑚𝑗

𝜌𝑗
𝑗

∑ 𝑓𝑗(𝑦𝑗 − 𝑦𝑖)𝑊
𝑚𝑗

𝜌𝑗
𝑗

∑ 𝑓𝑗(𝑧𝑗 − 𝑧𝑖)𝑊
𝑚𝑗

𝜌𝑗
𝑗 ]

 
 
 
 
 
 

 

In the SPH approximation, the correction can be 

performed by dividing the kernel function with the unity 

condition of eqn. (9). (Shepard filter) With this method, 

eqn. (11) can be expressed by dividing eqn. (10) with the 

Shepard filter. 

 

(
𝜕𝑓

𝜕𝑥
)
𝑖
=

1

2∆𝑥
[
∑

𝑚𝑗

𝜌𝑗
𝑓𝑗𝑊𝑖+∆𝑥𝑗

∑
𝑚𝑗

𝜌𝑗
𝑊𝑖+∆𝑥𝑗

−
∑

𝑚𝑗

𝜌𝑗
𝑓𝑗𝑊𝑖−∆𝑥𝑗

∑
𝑚𝑗

𝜌𝑗
𝑊𝑖−∆𝑥𝑗

]             (11) 

 

Because ∆𝑥 is very small, 𝑂(∆𝑥2) can be neglected. 

Then, for the final form of the simplified correction 

method is derived as eqn. (12). 

 

𝛻𝑓(𝑟𝑖)𝑛𝑒𝑤 =
∑

𝑚𝑗

𝜌𝑗
𝛻𝑊𝑖𝑗𝑗

∑
𝑚𝑗

𝜌𝑗
𝑊𝑖𝑗𝑗

[
∑

𝑚𝑗

𝜌𝑗
𝑓𝑗𝛻𝑊𝑖𝑗𝑗

∑
𝑚𝑗

𝜌𝑗
𝛻𝑊𝑖𝑗𝑗

−
∑

𝑚𝑗

𝜌𝑗
𝑓𝑗𝑊𝑖𝑗𝑗

∑
𝑚𝑗

𝜌𝑗
𝑊𝑖𝑗𝑗

]          (12) 

 

3.3 Evaluation  

 

In order to evaluate the new derived correction method, 

comparisons were carried out for SPH summation of 

original form, KGF, and simplified KGC. (Eqn. 12-14) 

 

Original form 

𝛻𝑓(𝑟𝑖) = ∑
𝑚𝑗

𝜌𝑗
𝑓𝑗𝛻𝑊𝑖𝑗𝑗              (13) 

KGF form 

𝛻𝑓(𝑟𝑖) = ∑
𝑚𝑗

𝜌𝑗
𝑓𝑗�̃�𝛻𝑊𝑖𝑗𝑗              (14) 

 

Using a quadratic polynomial function the derivative 

of function was calculated. As shown in fig. 3, the 

calculated value with the correction shows much better 

results near the free surface than the original form. In the 

simplified KGC method, the degree of the correction is 

slightly less than that of KGF, but the simplified KGC 

method has a great advantage in terms of computational 

efficiency and stability.  

 

 
Fig 3. Comparison of the gradient calculation according to 

correction method 

 

4. Jet Breakup Simulation 

 

4.1 Reference experiment 

 

In this study, the FCI jet breakup of two different 

fluids was simulated using the SOPHIA code. The 

experiment of Manickam et al. (2017) was selected as a 

reference experiment, and analysis of jet breakup process 

according to different jet speeds and flooded conditions 

was carried out. [8] 

 

4.2 Simulation model 

 

Fig. 4 shows the schematic of MISTEE-Jet facility 

simulating jet breakup at KTH. The wall is made of 
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plexi-glass for observation, each side of wall is 75mm 

and a water pool depth is 465mm, and the nozzle 

diameter is 5mm. 

 Wood’s metal was used as a corium simulant, and the 

experimental conditions were arranged through scaling 

analysis of density ratio, Weber number, and Froude 

number. Initial temperature conditions of 16℃  water 

pool and 91℃ liquid wood’s metal were given. 

Using SPH code, 3D jet breakup simulations were 

performed according to the jet speeds (1m/s – 3m/s) and 

nozzle diameter conditions (5-10mm). And the total 

number of calculating particles is about 9 millions. 

 

 
Fig 4. Schematic of MISTEE-Jet facility [8] 

 

4.3 Result and discussion 

 

As shown in fig. 5, the jet breakup simulation results 

with 1.7m/s jet speed condition are compared with the 

experimental data. The fragmentation of jet flow was 

well simulated and have good agreement with 

experiment.  

 

Fig 5. Comparison jet breakup simulation results with 
experiment (1.7m/s, fully-flooded condition) 

 

 

 

 

 

5. Summary 

 

In this study, a new kernel gradient correction method 

was proposed to resolve the numerical errors in the SPH 

approximation. By applying the correction, it was 

confirmed that the calculated derivative value near the 

fluid boundary was improved. In addition, jet breakup 

simulations using high resolution SPH code were carried 

out with the new correction, and results were in good 

agreement with those of reference experiment.  
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