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1. Introduction 

 
NPPs have multiple provisions of the heat sink such 

as pumps, heat exchangers, and the pipes connecting 
them, which can be a pathway for heat removal from the 
heat sources. The station blackout (SBO) is the transient 
initiated by a loss of off-site AC power with subsequent 
loss of all on-site standby and emergency electrical 
power supplies. When the system and equipment of a 
PHWR plant remain intact but all the AC power 
becomes unavailable, all active heat sink becomes 
inoperable. In such an accident, the primary passive heat 
sink would initially be the steam generators (SGs). Due 
to the high elevation of the SGs, the continuous natural 
circulation by the thermosyphoning in the loops can be 
formed shortly after the run-down of the PHTS pumps 
and will continue until the inventory depletion of the SG 
secondary-side. The maximum temperature of the fuel 
sheath can remain below the limit criteria for the fuel 
integrity as long as the inventory of the SG secondary-
side is available. Moreover, the water make-up to the 
SG secondary-side can extend the duration of the 
natural circulation, which provides additional time for 
operators to take mitigation actions and then delays the 
accident progress. 

However, considering the transient without any 
mitigation action of operators or recovery of safety 
systems, like the situation of the Fukushima Daiichi 
NPP, the inventory of the SG secondary-side will be 
eventually depleted due to the inoperable feedwater 
supply and the continuous steam discharge through the 
main steam safety valves (MSSVs), which can cause the 
heat sink function of SGs to get lost. 

Since the recent actual occurrence of the severe 
accident [1,2], there have been much awareness and 
consensus that that the SBO is no longer a hypothetical 
transient and the fuel integrity can be threatened under 
the above harsh but possible conditions. There are many 
tasks that need to be quantitatively analyzed and 
identified, and the plant responses prior to the severe 
damage of the fuel channels should be understood in 
detail to establish and more reinforce the plans for 
preventing and mitigating such accident consequences 
through precise safety assessment. 

Therefore, the purpose of the present study is to 
investigate the system responses of PHWR plants over 
the transient. In this study, the complete loss of AC 
power was selected as a representative transient and the 
simulation has been carried out using the system code of 
MARS-KS ver.1.5 for detailed analyses under the 

transient condition of no mitigation actions or recovery 
of safety systems. 

 
2. Modelling CANDU-6 using MARS-KS code 

 
The plant chosen for the accident analysis in the 

present study is Wolsong-2/3/4 unit, a typical CANDU-
6 with 600 MW, and a detailed analysis model was 
envisioned into the MARS-KS input model [3]. The 
present model includes the PHTS with horizontal fuel 
channels connecting to feeders, headers, PHTS pumps, 
SG u-tubes, moderator system, and emergency core 
cooling system (ECCS). It also contains the SHTS 
including the feedwater system, the shell-side of the SGs, 
and several valves installed on the main steam lines for 
discharging the steam of high pressure. 

Figure 1 shows the schematic nodalization of the 
CANDU-6 plants. As well as the major volume 
components consisting of the above systems, various 
control logics are included for stably achieving the 
steady state conditions of a normal power operation and 
for properly simulating the operation of the components 
during the transient. 
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Fig. 1. Nodalization of CANDU-6 plants for accident analysis. 

 
The 380 fuel channels of CANDU-6 are arranged 

horizontally in 22 columns and 22 rows inside a 
Calandria vessel. In the present study, the fuel channels 
were represented by 7-averaged channels per core pass. 
Figure 2 shows the grouping scheme of the fuel 
channels with a total of 14 sections parted by 
considering the elevation and power of the fuel channels. 
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Fig. 2. Scheme of channel grouping, where in CANCHAN 
XY, X is pass # (1~4) and Y is group # (1~7). 

  
3. Results and Discussion 

 
3.1 Calculation of steady state condition 

 
A steady state condition was achieved successfully by 

running the present model for a long period of 5,000 sec 
to check out the stable convergence of the key 
parameters. Table 1 shows the calculated results and the 
target values [4]. Major parameters calculated such as 
pressure, temperature, water level, and recirculation 
ratio were in a good agreement with the target values of 
when they were in the normal power operation. The 
calculated steady state solution therefore would be an 
acceptable set of the initial conditions from which the 
SBO transient simulation started. 

 
Table I: Steady state conditions for a normal power 

operation 

Parameter MARS-
KS 

Target 
value 

Relative 
diff., [%] 

Reactor power, [%] 103 103 0.00 

Pressure of RIH/ROH, 
[MPa(a)] 

11.42/ 
10.00 

11.42/ 
10.0 

0.00/ 
0.00 

Temp. of RIH/ROH, [K] 541.15/ 
583.44 

541.15/ 
583.15 

0.00/ 
0.05 

Quality of ROH, [%] 4.9 4.9 0.00 

Level of PZR, [m] 12.48 12.48 0.00 

Flowrate of coolant, 
[kg/s] 1,903.10 1,903 0.01 

Flowrate of steam, [kg/s] 1,067.72 1,063 0.44 

Steam Temp. of SGs, [K] 534.76 533.15 0.30 

Pressure of SGs, 
[MPa(a)] 4.82 4.7 2.55 

 

3.1 Simulation of SBO transient without any mitigation 
action 
 
Figure 3 shows the PHTS pressure and temperature 
during the transient. Complete loss of AC power caused 
the PHTS pumps immediately to stop and then the 
coolant flow in the loops to slow down due to the loss of 
the forced circulation. Because the reactor was shut 
down after maintaining the full power of the normal 
operation for its delayed time, the PHTS pressure and 
temperature increased due to the temporary imbalance 
between the reactor power and the heat removal by the 
coolant of low flow at this time. However, the PHTS 
pressure and temperature decreased due to the 
combined effect of the power reduction to the decay 
level, LRVs’ opening, and heat removal through the 
SGs. Also the PHTS pump shaft seal leakage flow 
resulted in more decreasing the inventory and the 
pressure of the PHTS. The PHTS depressurization 
continued while the liquid inventory of SGs was boiled 
and discharged to the atmosphere through the MSSVs. 
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(b) Temperature 

Fig. 3. Behaviours of pressure and temperature in PHTS. 
 
Figure 4 shows the void fractions in the ROHs and the 
u-tubes. The flowrate in the fuel channels was reduced 
and the void fraction increased rapidly after the 
depletion of the inventory of SGs. Physically, steam 
moves upward and accumulates at the high positions 
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such as the top of the u-tubes. So, the void fraction in 
the u-tubes increased, resulting in significantly 
increasing the flow resistance and then affecting the 
cooling of the fuel channels. 
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(b) u-tubes of SGs 

Fig. 4. Behaviours of void fraction. 
 
In PHWR reactors, the deformation in the fuel channel 
may lead to PT-CT contact which allows for a direct 
heat removal pathway to the moderator under severe 
transient conditions. Figure 5 shows the peak cladding 
temperature (PCT). The simulations of the present study 
were terminated after the PCT had reached the 
limitation ensuring that significant channel deformation 
does not occur. While the coolant was present in the 
shell side of the SGs, the fuel channel was predicted to 
be cooled properly through the continuous heat transfer 
to the shell side of the SGs. After the inventory of the 
SGs was depleted, the PCT quickly increased to exceed 
the limitation after approximately 6,300 seconds, which 
could not be guaranteed for the fuel integrity. 
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Fig. 5. Behaviour of PCT. 
 

 
4. Conclusions 

 
This study was performed to examine the overall system 
responses over the transient in PHWR plants. The 
complete loss of all the AC power or SBO was selected 
as a representative transient and the accident simulation 
was performed using MARS-KS code for detailed 
analyses under the transient condition without any 
mitigation actions of operators and recovery of safety 
systems. A steady state condition was achieved 
successfully by running for a long period to check out 
the stable convergence of the major parameters. 
Calculated results such as pressure, temperature, water 
level, and recirculation ratio, were in a good agreement 
with the target values of when they were in a normal 
power operation. The transient simulation was 
performed and the behaviours of the major parameters 
were quantitatively examined. Due to the depletion of 
the secondary-sided inventory, the coolant in the PHTS 
showed a complex flow patterns, such as flow 
stagnation and reversal flow, and consequently the PCT 
exceeded the fuel integrity criterion following the 
degradation of the cooling capacity of the fuel channel, 
which was the reasonable results confirmed through the 
code. 
 

REFERENCES 
 

[1] IAEA, “The Fukushima Daiichi Accident”, International 
Atomic Energy Agency, Vienna, Pub-1710, 2015. 
[2] OECD, “Five Years after the Fukushima Daiichi Accident: 
Nuclear Safety Improvements and Lessons Learnt”, Nuclear 
Energy Agency, No. 7284, 2016. 
[3] KINS, “MARS-KS Code Manual”, KINS/RR-1822, 2018. 
[4] KHNP, “Final Safety Assessment Report of Wolsong 3,4 
units”, Korea Hydro & Nuclear Power Co., Ltd., 2018. 
(Korean). 

Transactions of the Korean Nuclear Society Virtual Spring Meeting
July 9-10, 2020




