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1. Introduction 

 
In a nuclear reactor safety evaluation process, it is too 

costly to experiment in the same scale with a commercial 
nuclear power plant. Therefore, the safety evaluation of 
a nuclear reactor relies on a safety analysis computer 
code substantially, whose accuracy directly affects the 
nuclear safety. The reactor safety analysis code is 
consisted of governing equations and constitutive 
equations. The constitutive equations in a reactor safety 
analysis code has high accuracy for simulating a separate 
effect test (SET). They are typically a result of 
experimental data regression with a mathematically 
limited form. Furthermore, SET can be deliberately used 
for improving constitutive relations’ accuracy. The code 
validation process also includes comparison of the code 
result with an integral effect test. If there is a mismatch 
between experiment results and simulation results, 
quantifying the cause and using the information to 
improve constitutive relations are not straightforward. 
Therefore, if a methodology which the accuracy of the 
constitutive relations is improved as the number of 
experimental data increases is developed, one can expect 
that the safety analysis code’s accuracy will 
automatically improved as more data is accumulated. 
This methodology can be developed using an artificial 
neural network that enables data-driven modeling and 
has less mathematical limitations.  

In the previous studies [1, 2], artificial neural networks 
were applied to replace the wall heat transfer coefficient, 
and wall friction coefficients in thermal hydraulic (TH) 
conditions. In this study, artificial neural networks (ANN) 
that substitute constitutive equations including 
interfacial heat transfer, interfacial friction are trained on 
the range that can cover wider TH conditions for 
analyzing design basis accidents. Methodology for the 
training data generation is developed to capture the two-
phase flow characteristics as much as possible. Also, the 
methodology for increasing the model accuracy is newly 
tested for wall heat transfer. The reference nuclear safety 
analysis code used in this study is MARS-KS. 
 
 

2. Data generation 
 

The constitutive equation modules in the MARS-KS 
code calculate wall heat transfer coefficient, wall friction 
coefficient, interfacial heat transfer coefficient, 
interfacial friction coefficient as a function of thermal 
hydraulic and geometrical conditions. As the main 
objective of this study is generating an artificial neural 

network whose performance is equivalent to the 
constitutive equations in MARS-KS code first, output 
parameters of the ANN are constitutive equations, and 
input parameters are the TH and geometrical conditions. 
In the process of generating the training data for ANN, it 
is necessary to determine the range of TH and 
geometrical conditions. It is important to cover the wide 
range of conditions for increasing the reliability of the 
developing ANN. In this study, the range was selected to 
include the design basis accidents of the APR 1400. For 
the design basis accidents, LOCA, SGTR, LOOP are 
considered. Table Ⅰ shows the conditions covering the 
selected DBAs. 

 
Table Ⅰ. Range of training data generation 

 

Input parameters Range 
Pressure 0.09 – 19 MPa 
Fluid Temperature 25 – (Tsat+ 50) K 
Wall Temperature 25 – 1184 K 
Void Fraction 0 – 1 
Mass Flux 3 – 150% 
Slip Ratio 1 – 3 
Hydraulic Diameter 8E-4 – 12 m 
Volume Length 0.01 – 550 m 
Angle 0 or 90 
Roughness 0 – 2.0E-4 

 
TH variables except for temperatures are sampled 

from uniform random function in the given range. In the 
case of temperatures, it is not proper to sample with 
uniform distribution for representing two-phase 
phenomenon correctly. Two-phase flow occurs near the 
saturation temperature and using the uniform random 
function for sampling will not sample many data having 
saturation temperature of fluids. Therefore, three 
different sampling method is used for selecting the fluid 
temperature: uniform random distribution (Ⅰ), log 
uniform random distribution (Ⅱ), and single value of 
saturation temperature (Ⅲ).  
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Fig. 1. Fluid temperature sampling method 

 
Nucleate boiling regime is selected in the safety 

analysis code when the wall temperature is slightly 
higher than the saturation temperature. To capture this 
phenomenon, data are generated in different way with 
respect to the wall temperature. Log uniform random 
function is used when the wall temperature is higher than 
the saturation temperature, and uniform random function 
is used in other cases.  

 

 

Fig. 2. Wall temperature sampling method 

 
Hydraulic diameter, volume length, roughness is 

included in the geometrical conditions. Geometry 
information of APR1400 [3], and ATLAS instrument of 
DSP-04 [4], and DSP-05 [5] is used to generate training 
data. In case of geometrical conditions, it is not 
uniformly distributed, and it is distributed as several 
discrete values in the code inputs. Therefore, both 
methods are used to sample the training conditions: 
uniform distribution and existing discrete value. 

The number of training data is more than hundred 
thousand for each constitutive relation and consists of the 
same number for each regime. Figure 3 shows the 
histogram of training data outputs. 

 

 

 

 

 
Fig. 3. Training data (a~g: coefficient of liquid wall HTC, 

vapor wall HTC, liquid wall FRIC, vapor wall FRIC, liquid 
interfacial HTC, vapor interfacial HTC, interfacial FRIC) 
 

 
3. Model description 

 
The structure of the artificial neural network should be 

determined before the training process begins. When 
performing a safety analysis with MARS-KS code, 
numerous iterative calculations are performed, and the 
code calls constitutive relations module many times per 
iteration. If the calculation time using the ANN takes 
longer time than the existing constitutive relation module, 
the calculation time of safety analysis increases 
substantially. Therefore, simple structure of artificial 
neural network is first preferred. Table Ⅱ shows the time 
of calculating the wall heat transfer coefficient for ten 
thousand times. The number next to the ANN in Table Ⅱ 
is (the number of node) × (the number of hidden layer). 

 
Table Ⅱ. Constitutive equation calculation time 

 

 MARS-KS ANN(50×4) ANN(100×4) 
Time [sec] 0.3045 0.1554 0.6909 

 
Multi-layer perceptron is used for data regression 

frequently, and has a simple structure. Hyperparameters 
are variables that should be determined before training 
the artificial neural network, which includes the number 
of node, the number of hidden layer, activation function, 
learning rate, batch size, and so forth.  

 
Table Ⅲ. Range of ANN hyperparameters 

 

Hyperparameters 
The number of node 1 – n2  
The number of hidden layer 2 – 4 
Learning rate 1E-3 – 5E-2 
Batch size 2000 – 20000 

Activation function Sigmoid, ReLU, SeLU, 
ELU 

Loss function Mean Squared Error (MSE) 
Training and validation 75% / 25% 
Optimizer Adam optimizer 
 

(a) (b) 

(c) (d) 

(e) (f) 

(g) 
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Table Ⅲ shows the range of the hyperparameters. In 
order to select optimal hyperparameters, training was 
performed under the conditions given in Table Ⅲ, and an 
ANN structure with high accuracy was selected among 
them. Table Ⅳ is the optimized hyperparameters for 
each constitutive equation which the ANN has high 
performance. 
 

Table Ⅳ. ANN Hyperparameters 
 

 Node 
number 

Hidden layer 
number 

Activation 
function 

Wall HTC 
(Tw > Tsat) 90 3 ReLU 

Wall HTC 
(Tw < Tsat) 60 2 ReLU 

Wall FRIC 44 3 ReLU 
Interfacial 

HTC 40 3 Sigmoid 

Interfacial 
FRIC 30 3 ReLU 

 
 

4. Results and Discussion 
 

Table Ⅴ shows the training accuracy, and validation 
accuracy. This training and validation accuracies are in 
logarithmic values. The accuracy decreases in the 
process of changing the logarithm to original value but 
due to the large span of data it is inevitable to use 
logarithmic transfer of the original data. 

 
Table Ⅴ. Accuracy of the artificial neural network 

 
 
Table Ⅵ shows the accuracy of the ANN in wall heat 

transfer coefficients. R2 decreased significantly when the 
logarithm values change to the original values. Most 
result shows that the error is not negligible compared to 
the existing constitutive relation, and two reasons can be 
inferred which lower the model accuracy. The 
constitutive equations in MARS-KS code are composed 
of different correlations according it is selected by 
choosing heat or flow regime first. The data complexity 
increases due to the logical statement used for the regime 
selection and the number of different correlations used in 
the constitutive equations. Also, in the MARS-KS code, 
there are non-physical values programmed in 
constitutive equations to increase the stability of the code.  

 

Table Ⅵ. Result of Liquid Wall Heat Transfer Test 
 

 MAPE (%) MAXE (%) R2 
Single Vapor 490.61 1.49E+04 -1.2585 
Nucleate 9.46E+05 1.10E+10 0.3022 
Transition 2.88E+03 3.54E+07 0.9019 
Film 1.11E+03 1.15E+07 0.7504 
Single Liquid 7.20 371.74 0.9823 
Condensation 89.92 1.38E+04 0.6473 
 
For increasing the accuracy of the model, different 

artificial neural network is used for each regime. Also, 
an artificial neural network that classifies the regimes 
according to the TH conditions is combined to the 
constitutive equation module. Lastly, non-physical 
values are excluded in the training process. In the single 
vapor regime, void fraction of the most data has unity 
value, which denotes that the fluid is only consisted of 
vapor. However, in the MARS-KS code, there is a few 
cases that void fraction is not unity. If the wall 
temperature is higher than the saturation temperature and 
the fluid temperature, and total heat flux value is negative 
at the same time, MARS-KS code considers this case as 
the single vapor regime. These data are also excluded as 
this condition is not necessarily the single vapor state. 
Similarly, there is a few cases that vapor heat transfer 
coefficient is not zero in nucleate boiling regime, and this 
data is also excluded.  

 
Table Ⅶ. Result of Liquid Wall Heat Transfer Test when 
using the different artificial neural network for each regime 

 

 MAPE (%) MAXE (%) R2 
Single Vapor - - - 
Nucleate 5.76 213.74 0.9913 
Transition 253.47 2.92E+06 0.9955 
Film 96.99 2.98E+05 0.9287 
Single Liquid 4.35 212.5 0.9932 
Condensation 62.32 1.96E+04 0.7439 
 
Table Ⅶ shows the accuracy of the ANN when using 

the methods mentioned above. It is clearly observed from 
Figure 4 that the ANN model accuracy is improved. 
Average accuracy increased in most regime. However, in 
some regimes, the average accuracy is still low. 

 

 

 

 MSE 
(training) 

MSE 
(validation) R2 

Wall HTC 
(Tw > Tsat) 1.796E-3 2.156E-3 0.9677 

Wall HTC 
(Tw < Tsat) 2.330E-3 2.362E-3 0.8999 

Wall FRIC 3.245E-3 3.188E-3 0.9076 
Interfacial 

HTC 5.206E-3 5.843E-3 0.9001 

Interfacial 
FRIC 9.785E-4 1.035E-3  0.9417 
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Fig. 4. MARS-KS liquid wall heat transfer coefficient versus 
prediction using artificial neural network (left: using one 

ANN for whole regime, right: using different ANN for each 
regime) 

 
Figure 5 shows the accuracy of the artificial neural 

network that separates determines the regime. Decision 
tree, Naïve Bayes classifier, support vector machine, K-
nearest neighbor are all tested. Support vector machine 
has the highest accuracy among them, and the average 
accuracy is 94.5 %. 

 

 
Fig. 5. Heat transfer regime classification results 

 
 

5. Summary and Further works 
 

In this study, an artificial neural network has been 
developed to observe the feasibility to be used for the 
constitutive relations in the nuclear safety analysis code. 
ANN enables data-driven modeling, thus the authors 
think that as more experimental data accumulates the 
code accuracy can be improved better if ANN can be 
used for the constitutive relations of the code. In the 

previous study, wall heat transfer coefficient and wall 
friction coefficient were trained with the artificial neural 
network within narrow thermal hydraulic conditions. In 
this study, the range is expanded that can cover the 
design basis accidents in a nuclear power plant. 
Interfacial heat transfer and interfacial friction which 
were not dealt in the previous study are also newly 
developed with ANN. In order to minimize the code 
calculation time, multi-layer perceptron which has a 
simple structure is first tested. However, the accuracy of 
the code is not satisfactory if the training data range 
covers the whole regime. Output parameters are trained 
in logarithmic scale due to the wide range, and errors 
were greatly increased in the process of transferring 
logarithmic value to the original value. To improve the 
model accuracy, training is performed using different 
artificial neural networks for each heat transfer regime, 
and artificial neural networks for determining the regime 
is also newly constructed. Furthermore, non-physical 
values are excluded from the training data. The accuracy 
increases for most regimes. However, accuracy is still 
unsatisfactory in some regimes, which should be further 
improved. If necessary, using more complicated artificial 
neural network will be used. 
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