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1. Introduction

The CAP (Containment Analysis Package) code is
containment building analysis code for the containment
integrity assessment, Emergency Core Cooling System
(ECCS) performance assessment, and equipment
qualification envelop analysis.[1] In order to improve
the performance of the in-pipe flow and two-phase flow
analysis of CAP, a pipe component was implemented.
[2] A condensation model based on the Colburn-
Hougen method is implemented in the pipe component
of CAP to analyze wall condensation in the pipe.

In this study, to validate the condensation model of
CAP, MIT [3] and KAIST [4] condensation
experiments are selected and analyzed, and the

calculation results are compared with experiment results.

2. Implementation of Wall Condensation Model

To predict the wall film condensation heat transfer in
the presence of non-condensable gases, a condensation
model based on the Colburn-Hougen method was
implemented.

The gas/liquid side heat flux is calculated as below.

1_—|ib =h (T, -T,)
P

h, : Mass transfer coefficient [m/s]
T =T

sat

Py = P (P) [ko/m’]
P : Total pressure [Pa]
P, : Steam partial pressure at the interface [Pa]

P, : Steam partial pressure at the bulk [Pa]
higs = hig.ea (P ) (Latent heat at the bulk [J/kg])

ql = hmhfgbpg In

(Pvi ) (Interface temperature [K])

In here, for the mass transfer coefficient, Gilliand
(forced convection), Rohsenow-Choi (Laminar flow),
and Churchill-Chu (Natural convection) models are
used. To calculate the heat flux, interface temperature
and vapor partial pressure should be obtained by
iterative method. With above equation and convective
heat transfer, wall heat transfer rate when wall
condensation occurs could be calculated.

3. Validation of Wall Condensation Model

The MIT experiment and KAIST experiment were
analyzed to validate the wall film condensation model in
CAP.

3.1 MIT vertical condensation tube experiment

The schematic diagram of the MIT experiment was
shown in Fig. 1. The CAP code modeling for MIT
experiment consists of one PIPE component, nine heat
structures, and inlet and outlet boundary conditions, as
shown in Figure 2. The PIPE component is modeled to
be a vertical downward pipe and consists of 11 cells.
The vertical condensation tube is modeled with 9 cells
(p1~p9), 2.54 m in length and 0.0016619 m? in the flow
area.

The calculation results are shown in Fig. 3 to Fig. 5.
As shown in figures, CAP condensation model
reasonably predicts the heat transfer coefficient with in
an uncertainty of 20%.

3.2 KAIST vertical condensation tube experiment

The schematic diagram of the KAIST experiment
was shown in Fig. 6. The CAP code modeling for
KAIST experiment consists of one PIPE component,
nine heat structures, and inlet and outlet boundary
conditions, as shown in Figure 7. The PIPE component
is modeled to be a vertical downward pipe and consists
of 13 cells. The vertical condensation tube is modeled
with 11 cells (p1~p11), 2.4 m in length and 0.001772
m? in the flow area.

The calculation result is shown in Fig. 8. As shown in
figure, CAP condensation model reasonably predicts the
heat transfer coefficient with in an uncertainty of 20%.

4. Conclusion

In this study, the film condensation model based on
Colburn-Hougen method is implemented CAP to
improve the wall heat transfer analysis performance. For
the validation of condensation model, MIT and KAIST
experiments were analyzed, and the calculation results
show that wall film condensation model is implemented
into CAP appropriately.
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Fig. 1. Schematic diagram of MIT condensation

experiment
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Fig. 2. Nodalization of MIT experiment
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Fig. 6. Schematic diagram of KAIST condensation
experiment
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Fig. 7. Nodalization of KAIST experiment
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