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1. Introduction 
 
Uranium oxide fuels are mainly used in conventional 

nuclear power reactors. Nowadays, uranium alloys are 
actively being developed for fast reactors and research 
reactors [1-4]. For fuel design, the effects of radiation 
damage on the fuel performance should be considered. 
However, there are limitation to the experiments of 
radioactive materials. Computer simulation can help to 
overcome these limitations. 

Molecule dynamics (MD) is widely used to predict 
material properties and structures, understand the atomic 
motion and identify a mechanism in chemical reactions. 
There are two types of MD; ab-initio MD and classical 
MD. Ab-initio MD provides accurate and reliable results. 
However, it is affected by the system size and timescale. 
Only hundreds of atoms and several picoseconds are 
generally calculated. On the other hand, classical MD is 
suitable for large scale calculations such as plastic 
deformation and radiation damage. However, the 
accuracy of classical MD is dependent on interatomic 
potentials.  

There are many types of interatomic potentials. Many 
body potentials such as embedded atom method (EAM) 
[5,6] and modified embedded atom method (MEAM) [7] 
are usually used for alloys. However, the many body 
potentials exist only in popular materials and to 
development of new many body potentials is 
complicated. When proper many body potentials do not 
exist, Morse potentials can be used instead of many-body 
potentials. There are applications of the Morse potential 
function to cubic structure metals. However, there is no 
application to orthogonal structure such as α-uranium. In 
this study, we obtained Morse potential function of α-
uranium using the result of ab-initio and analyze the 
reliability by comparing it to the existing potentials of 
uranium [8,9].  

 
2. Methods and Results 

 
The details of ab-initio and results of ab-initio are 

described in Section 2.1.  In 2.2 section, the theory of 
Morse potential is described and Morse parameters are 
described. The results of MD simulation with Morse 
potential and previous potentials of uranium are 
described and compared in Section 2.3. 

 
2.1 Ab-initio calculation 

 
Ab-initio calculation is based on density functional 

theory(DFT) which is implemented in the Vienna ab 

initio Simulation Package (VASP) [10,11]. The plane-
wave basis set with an energy cutoff of 550eV within the 
framework of the projector augmented wave (PAW) 
method [12,13] is used to describe the valence electrons. 
The exchange-correlation functional parameterized in 
the generalized gradient approximation (GGA) [14] by 
Perdew, Burke, and Emzerhof (PBE) [15] is used. We 
treat 6s26p67s25f36d1 as valence electrons for α-U. A 
Monkhorst-Pack k-points grid [16] is used for sampling 
of the Brillouin zone, with an 18×9×11 mesh. The partial 
occupancies are set using the Methfessel-Paxton method 
[17] of order one with a smearing width of 0.2 eV. The 
electronic and ionic optimizations are performed using a 
Davidson-block algorithm [18] and a Conjugate-gradient 
algorithm [19], respectively. The stopping criteria for 
self-consistent loops are 0.1 meV/cell and 1 meV/cell 
tolerance of total energy for the electronic and ionic 
relaxation, respectively. Bulk modulus is calculated by 
elastic constants. Elastic constants are calculated as the 
displacement of all atoms by 0.015  Å  with x, y, and z 
direction. The rotationally invariant DFT + U method 
introduced by Dudarev et al. [20], Eq. (2.5) is used for 
5f3 electrons in α-U with Ueff = 1.24 eV [21] and Ueff = 
1eV. 

The results of ab-initio calculation are listed in Table I. We 
choose Ueff = 1eV for later calculation because it is more 
similar with experimental data than Ueff = 1.24 eV. 

 
Table I: Ground-state properties of α-U. Volume and lattice 
constants are in units of Å, the bulk modulus in GPa, and the 
cohesion energy in eV/atom. Experimental lattice constants are 
measured at about 4 K [22], the bulk modulus is measured at 
room temperature [23], cohesion energy is obtained at 0 K [24]. 

 
Ueff = 

1.24eV 
Ueff = 
 1eV 

Ref 
[25] 

Exp. 

V/N 20.86 20.71 20.67 20.58 

a 2.862 2.851 2.845 2.844 

b 5.868 5.863 5.818 5.869 

c 4.97 4.956 4.996 4.932 

u 0.1004 0.1 0.1025 0.1023 

B 135.4 136.5 133 135.5 

𝑬𝑪 -5.27 -5.46 - -5.55 
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2.2 Morse potential parameters 

 
The potential energy φ൫𝑟௜௝൯  of two atoms i and j 

separated by a distance 𝑟௜௝ is given in terms of the Morse 
function by  

 

φ൫𝑟௜௝൯ ൌ 𝐷௘ ቄ𝑒
ିଶఈ൫௥೔ೕି௥೚൯ െ 2𝑒ିఈ൫௥೔ೕି௥೚൯ቅ,      (1) 

 

where 𝛼  is a constant with dimensions of reciprocal 
distance, 𝑟௢ is the equilibrium distance of the two atoms, 
and 𝐷௘ is dissociation energy. 
It is necessary to sum Eq. (1) to obtain the potential 

energy of the whole crystal. The total potential energy is 
given by  

 

Φ ൌ
ଵ

ଶ
𝑁𝐷௘ ∑ ቀ𝑒ିଶఈ൫௥ೕି௥బ൯ െ 2𝑒ିఈ൫௥ೕି௥బ൯ቁ௝ ,     (2) 

 

where N is the total number of atoms in crystal and 𝑟௝ is 
the distance from the origin to the 𝑗th atom.  
It is convenient to define the following quantities 
 

 𝛽 ൌ 𝑒ఈ௥೚ ,  𝑟௝ ൌ 𝑀௝𝑎 ,                       (3) 
 

where 𝑀௝ is the position coordinates of 𝑗th atom in the 
lattice with a lattice constant, 𝑎 . The structure of α-
uranium is orthogonal. So, internal parameters such as 
b/a ratio, c/a ratio, and u are needed to express position 
coordinate as the ratio of 𝑎. 
Then, the total potential energy can be rewritten as 
 

Φሺ𝑎ሻ ൌ
ଵ

ଶ
𝑁𝐷௘ሾ𝛽ଶ ∑ 𝑒ିଶఈ௔ெೕ

௝ െ 2𝛽∑ 𝑒ିఈ௔ெೕ
௝ ሿ.  (4) 

 

At T = 0K, 𝑎଴ is the equilibrium lattice constant. Then,  
Φሺ𝑎଴ሻ is the energy of cohesion, the first derivative of Φ 
at 𝑎଴ is equal to 0, and the second derivative of Φ at 𝑎଴ 
is related to the bulk modulus. That is, 

 

Φሺ𝑎଴ሻ ൌ 𝑁 ∗ 𝐸௖ ,                         (5) 
 

where 𝐸௖  is the cohesion energy per atom at zero 
pressure and temperature,  
 

ቀ
ௗ஍

ௗ௔
ቁ
௔బ
ൌ 0,                              (6) 

 

and the bulk modulus is given by 
 

𝐵 ൌ 𝑉଴ ቀ
ௗమ஍

ௗ௏మ
ቁ
௔బ
ൌ

ଵ

ଽ௖ே௔బ
ቀ
ௗమ஍

ௗ௔మ
ቁ
௔ୀ௔బ

,       (7) 

with 
V/N ൌ c𝑎ଷ 

 

where 𝑉଴ is the equilibrium volume at zero temperature, 
B is the bulk modulus at zero temperature and pressure, 
and c varies with the crystal structure. 
Solving Eq. (6), we obtain 
 

β ൌ
∑ ெೕ௘

షഀೌಾೕ
ೕ

∑ ெೕ௘
షమഀೌಾೕ

ೕ
  .                        (8)  

 

From Eqs. (4), (5), (6), and (7), we derive the relation 
 

ஒ∑ ௘
షమഀೌಾೕ

ೕ ିଶ∑ ௘
షഀೌಾೕ

ೕ

ସఈమఉ∑ ெೕ
మ௘

షమഀೌಾೕ
ೕ ିଶఈమ ∑ ெೕ

మ௘
షഀೌಾೕ

ೕ
ൌ

ா೎
ଽ௖௔బ஻

 .  (9) 

 

We obtain 𝛼  and β  by solving Eqs. (8) and (9). We 
solve Eqs. (8) and (9) with the iteration method. 
Substituting the  𝛼 and β into above Eqs, we obtain 𝑟௢ 
and 𝐷௘. In other words, the Morse potential parameters 
𝛼, 𝑟௢ , and 𝐷௘  are determined by the lattice parameters, 
bulk modulus, and cohesion energy per atom.  

The Morse potential parameters are listed in Table II. 
These values are calculated by ab-initio calculation in 
section 2.1. 
 

Table II: Morse potential parameters of α-U. Units of 𝛼, 𝑟௢, and 
𝐷௘ are Åିଵ, Å, and eV, respectively.  

 
 
2.3 MD simulation 

 
For the computation of the reference potentials and the 

obtained potential in this study, we need to create a 
structure of α-U. The structure contains about 4000 
atoms in a simulation box with the periodic boundary 
conditions in all three dimensions. For each of the 
simulations we perform a 5 ps MD-run for equilibrium at 
0K temperature. Classical MD calculations are 
performed using the LAMMPS code [26]. 

The results of MD simulations are listed in Table III. 
Orthogonal structure is slightly distorted. It seems that 
orthogonal structure is difficult expressed with Morse 
potential function. This is because Morse potential 
function is not considered about directionality and 
orthogonal structure is anisotropic. 

 
Table III: Ground-state properties of α-U at 0K using MD 
simulation with Morse potential, MEAM, and EAM. 
Volume and lattice constants are in units of Å, the bulk 
modulus in GPa, and the cohesion energy in eV/atom. 

 

Structure 𝜶 𝒓𝒐 𝑫𝒆 

α-U, A20, ort. 1.2144 3.3751 0.5933 

Property 
This 

Work 
MEAM[8] 

EAM[9
] 

Exp. 

V/N 20.55 21.09 20.10 20.58 

a 3.074 2.721 2.824 2.844 

b 5.325 6.381 5.762 5.869 

c 5.021 4.858 4.941 4.932 

u 0.167 0.093 0.1015 0.1023 

𝑬𝑪 -5.67 -5.55 -4.28 -5.55 
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3. Conclusions 
 

Morse potential functions for the α-uranium by using 
results of the ab-initio calculations. And the lattice 
constants and cohesive energy are calculated by MD 
simulations with Morse potential and other reference 
many body potentials. The orthogonal structure is 
distorted during relaxation because orthogonal structure 
is anisotropic. Therefore, even though Morse potential is 
used as a substitute for many body potentials with BCC 
and FCC materials, Morse potentials must be used 
carefully in anisotropic materials such as α-uranium. 
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