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1. Introduction 
 

Radiation dose estimation is an important procedure 

for not only radiological operators but also persons who 

are exposed by a background or artificial radiations such 

as cosmic rays, specific soils, and medical exposures. 

One of the renowned methods of biological dose 

estimation is Dicentric Chromosome Assay (DCA) 

discriminating the abnormal chromosomes whether cells 

have aberration chromosomes or not. Although the 

previous studies suggested the method to automatically 

estimate the radiation exposure with DCA [1-5], they 

still have lower accuracy than manual analysis and 

require human intervention. 

 We developed an automatic system of discriminating 

the abnormal chromosomes using an object detection 

algorithm based on deep learning method. In this 

research, Feature Pyramid Network (FPN) [6] was 

adopted and the chromosome data which were provided 

from Dongnam Institute of Radiological & Medical 

Sciences (DIRAMS) were used to train the neural 

network. 
 

 

2. Method 
 

2.1. Scope of chromosome discriminating algorithms 
 

The automatic system, which is under development 

in our research group, conducts DCA using FPN 

algorithm. The architecture of FPN [6-7] is shown in 

Figure 1. Inception-Resnet v2 [8] was used as a backbone 

network  to extract feature maps. 

 

 
Figure 1. Architecture of faster FPN.  

 

Figure 2. shows various cases discriminated by the 

network such as normal, dicentric, overlapped 

chromosomes and fragments. The training data consist of 

images and annotations with information on locations 

and sizes of the chromosomes. 

To overcome the lack of data and improve the 

performance of the trained network, the data were 

augmented by flipping the images horizontally, 

vertically as shown in Figure 3.  

 

 

 
Figure 2. (a) normal, (b) dicentric, (c) overlapped,  

chromosome images, and (d) fragment images. 

 

 
Figure 3. (a) original, (b) horizontal flipped, and (c) vertical 

flipped images. 

 

2.2. Hyperparameter settings 
 

The training was iterating for 200,000 steps using 

Adam optimizer [9] with momentum 0.9, input image 

size 1,280 x 1,024, and batch size 1. We also used 

learning rate scheduler that is cyclical with minimum 

learning rate 5x10−5 , maximum learning rate 1x10−4  

and cycle length 50,000 that decays by 0.25 every cycle 

lengths. The parameters chosen for the machine learning 

are summarized in Table 1. 

 
 

Table 1. Hyperparameter information for training the 

discriminating networks 

Image size 1,280 x 1,024 

Step 200,000 

Batch size 1 

Optimizer Adam 

Optimizer momentum 0.9 

Learning rate scheduler type Cyclical 

Minimum learning rate 5e-5 

Maximum learning rate 1e-4 

Cycle length 50,000 

Magnitude of decay 0.25 
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2.3. Performance estimation of the neural networks 

 

For estimating the performance of networks, we have 

used precision and recall values as criteria. As shown in 

Table 2, precision and recall are defined as the proportion 

of the correct detections to all detections and all ground 

truths respectively. We set the standards for correct 

detections using Intersection over Union (IoU) value 

defined as the proportion of intersection area to union 

area of prediction box and ground truth box. 

 

Table 2. Classification result matrix and definition of 

precision and recall 

Ground 

Truth 

Prediction result 

Positive Negative 

Positive TP FN 

Negative FP TN 

 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

𝑇𝑃

𝑎𝑙𝑙 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠
 

 

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

𝑇𝑃

𝑎𝑙𝑙 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ𝑠
 

 

 

3. Test and results 

 

In the experiments, all networks were trained on single 

NVIDIA Titan V100 GPU and 2 Inter(R) Xeon(R) Gold 

6136 CPUs at 3.000 GHz. 9,904 and 1,219 images were 

used to train and validate the network, respectively. The 

model parameters were saved at the step having the 

lowest validation loss. 

During the inference stage, a multi-scale strategy was 

used to improve the detection accuracy. 1,178 images 

were used to test the performance of the algorithm, and 

the results were obtained as shown in Figure 4. The 

network yields both precision and recall values over 0.9. 

The results are summarized in Table 3. 

 

 
Figure 4. Samples of abnormal chromosomes detections 

 

Table 3. Result of abnormal chromosome detection for test 

data. 

Number of images for performance 

evaluation 
1,178 

Precision for test data 0.9035 

Recall for test data 0.9056 

 

4. Conclusion 
 

In this study, an automatic system was proposed for 

discriminating the abnormal chromosomes with the 

object detection algorithm. The network yields a 

precision of 90.35% and a recall of 90.56%, respectively. 

These results showed that the deep learning network has 

an outstanding performance to distinguish the available 

data for DCA, and the automatic discriminator can be 

directly utilized for reducing the estimation time and 

resources.  
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