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1. Introduction 

 
Analysis on plastic gamma spectra is one of the most 

challenging tasks in radiation measurement, because of 

energy broadening effect and absence of full energy 

peak. To overcome these weaknesses, deep autoencoder 

model is addressed to reconstruct Compton edges not 

shown in plastic gamma spectra because of energy 

broadening effect. If Compton edges are shown in 

gamma spectra, it is possible to conduct direct pseudo 

gamma spectroscopy. 

 

2. Materials and Methods 

 

2.1 Deep autoencoder 

Autoencoder is a model of artificial neural networks 

which copies input signals to output. Figure 1 shows a 

schematic of an autoencoder model. Autoencoder is 

consisting of encoder and decoder part. Encoder is 

called as a recognition network, and it maps input signal 

into internal code. Decoder is called as a generative 

network, and it reconstructs output signal from internal 

code. If only encoder part is used once trained, data set 

can be represented as internal code whose dimension is 

smaller than data set. If noise signals are added into 

training data, autoencoder learns to reject noises. 

Therefore, autoencoder is typically used for dimension 

reduction or noise rejection of data set.  

 

Fig. 1 Architecture of Autoencoder 

 

2.2 Experimental setup 

 

A polystyrene crystal (cylinder type, dia. 30  50 mm, 

EJ technology) coupled with a PMT (R2228, 

HAMAMATSU) and a preamp (E990-501, 

HAMAMATSU) was used as plastic scintillation 

detector. Optical grease (BC630, Saint-Gobain) was 

spread at the junction between the crystal and PMT for 

optical coupling. For optical shielding, the crystal was 

wrapped by Teflon and black friction tapes. A pulse 

processor (DP5G, Ampteck) was used as a shaping amp 

and a multichannel analyzer. A high voltage supplier 

(NHQ 224M, ISEG) was used to supply operating 

voltage of the detector. Experiments to measure gamma 

spectra were conducted in an aluminum dark box for 

replenishment of optical shielding. The dark box 

consists of 10-mm-thick aluminum case with internal 

space of 440  440  899 (W  H  L) mm. Detector 

was placed on the shelf of the dark box, and the window 

of the detector was located at the center of the dark box. 
22Na, 60Co and 137Cs were used as gamma ray sources, 

and the position of source was fixed at 5 cm from the 

detector window. Energy calibration was conducted by 

a parametric optimization method [1].  

 

2.3 Monte Carlo simulation 

 

To simulate plastic gamma spectra, geometry of 

simulation was implemented as analogous to 

experimental setup as possible using MCNP 6.2 [2]. 

Compositions and densities of materials were defined by 

referring a material data report [3]. Gamma ray sources 

were defined as point sources. F8 tally was used to 

simulate spectral response of each source, and history 

number was set from 104 to 106. Energy bins for F8 tally 

were defined as identical to energy calibrated channel 

bins. To acquire ideal and energy broadened pulse 

height distribution, F8 tallies were defined with and 

without GEB card respectively. Coefficients “a”, “b” 

and “c” for GEB card was calculated by a parametric 

optimization method [1] using experimental spectra as 

analogous with measurement data as possible. 

 

3. Results 

 

Deep autoencoder was implemented in the Python 

environment using the Tensorflow [4] and the KERAS 
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[5] libraries. Hyper parameters for our autoencoder 

model were determined by trial and error. To train deep 

autoencoder, training and validation sets for GEB case 

were given as input, and those for ideal case were given 

as desired output. In general, noise signals are added 

into data set for autoencoder to have ability of noise 

reduction. However, it is almost as if noise signals are 

already included in our data set because the data set was 

created by simulation with history numbers from 104 to 

106.  

To compare reconstruction results with desired 

spectral data, a mean absolute percentage error (MAPE) 

was used as loss function, which is described as 

following equation.  

 

                      (1) 

where, n is the number of channel bins, i indicates ith 

channel bin, O is Compton edge reconstructed output, 

and I is ideal spectrum given as desired output.  

Deep autoencoder was trained with established 

training and validation sets for 500 epochs. For callback 

functions, model check point option was activated to 

save the best model built during training procedure, and 

the best model in training procedure was used as final 

model. Performance of trained model was tested using 

generated test set. Figure 2 show examples of Compton 

edge reconstruction results for measured spectra of 

single and multiple radioisotopes. 

 

 
(a) 60Co 

 
(b) 22Na&60Co 

 
(c) 22Na&137Cs 

Fig. 2 Compton edge reconstruction results 

 

4. Conclusion 

 

A deep autoencoder model was presented to 

reconstruct Compton edges in plastic gamma spectra. 

Deep autoencoder was trained not only to reconstruct 

Compton edges but to reduce measurement noises by 

designing data set generation procedure which 

measurement noises were included in. As shown in 

experimental results, it successfully reconstructed 

Compton edges in plastic gamma spectra with 

measurement noises. Therefore, it was possible to 

conduct direct pseudo gamma spectroscopy using 

energy broadening corrected results. 
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