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1. Introduction 

 

 Employment of graphics processing units (GPUs) for 

scientific computations is now a standard of modern high 

performance computing applications. nTRACER [1] had 

also demonstrated the GPU acceleration of direct whole-

core calculations and achieved a considerable computing 

time reduction with substantially less amount of resources 

[2]. Especially, computational hotspots such as method of 

characteristics (MOC) solver were effectively accelerated. 

 However, extending the GPU acceleration module for 

burnup calculations revealed some limitations. Due to the 

explosion of nuclides, the cross section (XS) treatments 

started to occupy a large portion of computing time. Much 

attention was paid to the solvers in the initial development 

phase of the GPU acceleration module, while the auxiliary 

XS treatments have been handled by CPUs so far. 

 Therefore, an extensive GPU offloading work to carry 

out the simulation fully on GPUs has been initiated. The 

purpose of this paper is to introduce the current status of 

the offloading task. Some details of the GPU acceleration 

of the burnup solver, which was not the scope of the 

previous research, as well as the GPU offloading of the 

XS routines which serve as bottlenecks will be explained. 

In addition, the up-to-date performance of nTRACER will 

be demonstrated. 

 

2. Problem Statement 
 

 The performance of GPU accelerated nTRACER had 

been examined only with fresh fuel problems where the 

number of nuclides used is small. Under such conditions, 

the portion of the XS treatment routines is small enough 

to be taken care of by CPUs. However, it does not hold 

anymore when burnup calculation comes in, as illustrated 

in Figure 1, in which about 60% (XS + most parts of the 

subgroup) of the total time is being spent by XS-related 

operations. 

 

 
Figure 1. Computing time share of (a) fresh core steady-

state and (b) cycle depletion calculations. 

  

 As the result, relying on CPUs for treating XS will not 

give good results for cycle depletion problems, and it is 

now mandatory to port XS treatment routines onto GPUs 

to achieve an optimal performance. 

 Using CPUs for the auxiliary operations would not be 

problematic if enough CPU cores are available. However, 

it is not the case in most situations. Figure 2 illustrates the 

architecture of our target heterogeneous computer cluster 

and the parallelization scheme of nTRACER. Each node 

is equipped with multi-core CPUs and several GPUs; in 

fact, having multiple GPUs in a node is a common form 

of heterogeneous clusters. 

 

 
Figure 2. Computing resource assignment of nTRACER 

for (a) 2D and (b) 3D calculations. 

 

 The problem arises from the plane-wise distributed 

parallelism of nTRACER, in which each GPU is assigned 

with a plane. For a 2D problem, a single GPU can deploy 

all the available CPU cores in a node. However, for 3D 

problems, multiple planes will be handled by a node and 

the number of available CPU cores per plane is reduced 

by the factor of the number of GPUs used. 

 If the calculations are carried out entirely on GPUs, 

the performance will be fully scalable with the number of 

GPUs employed. Therefore, it is necessary to remove the 

CPU dependency of the current GPU acceleration module 

in nTRACER as much as possible in order to achieve an 

optimal and linearly scaling performance. 

 

3. GPU Acceleration Strategies 

 

3.1 XS Treatments 

 

3.1.1 Data Structure Simplification 

 

 Many data in nTRACER are stored with a high level 

of abstraction, which involve nested derived types and 

arrays of structures (AOS). These complex structures are 

oriented to user-friendly code developments but are not 
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friendly to the performance. Accessing data located deep 

inside a chain of derived types requires multiple pointer 

referencing and is completely segmented. 

 Let alone the programmatic restrictions of handling 

such complicated data structures on GPUs, it can hardly 

satisfy the requirement of memory coalescing, which is 

one of the most important optimization requirements for 

GPU kernels that adjacent threads should access memory 

contiguously. Therefore, all the data should be cast into a 

sequence of contiguous memory blocks, as illustrated in 

Figure 3. 

 

 
Figure 3. Data structure simplification process. 

 

 Figure 3 shows an example of unfolding a dataset in 

which 2D arrays of different size are contained in each of 

the element of a derived type array. All the segmented 2D 

arrays are reshaped and gathered to form a monolithic 1D 

array. To distinguish the segments on the large 1D array, 

a displacement vector which contains the starting indices 

of each segment is defined. An array that contains the size 

of each segment is also accompanied. This is one of the 

simplest cases, and more complicated mapping would be 

required for unrolling multi-dimensional datasets. 

   

3.1.2 Macroscopic XS Calculation 

 

 Calculation of macroscopic XS required in neutronics 

solvers is schematically straightforward but entails heavy 

arithmetic operations. For each region, reaction type, and 

group, the microscopic XS of the nuclides are interpolated 

by temperature and accumulated with number densities. 

The workload is directly proportional to the number of 

nuclides contained in each region. 
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Note that the operations for each region and group are 

fully independent. Thus, each thread takes one region and 

one group, which yields millions of threads. 

 

3.1.3 Effective XS Generation and Subgroup Fixed Source 

Problem (SGFSP) 

 

 In the macro-level grid (MLG) scheme employed by 

nTRACER [3], the number of SGFSPs to be solved per 

each group is fixed to 8. The heterogeneity effects coming 

from the intra-pellet distributions of number densities and 

temperatures are handled by temperature consideration 

factors (TCF) and number density consideration factors 

(NDCF). The SGFSP formulations in the MLG scheme 

and definitions of the quantities are as follows: 
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 Generation of effective XS of an isotope involves the 

calculation of the un-interfered cross section and then the 

resonance interference factor (RIF) of other isotopes by 

the RIF library method [4]. 
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 Followed by an extensive restructuring of the legacy 

data, region- and group-wise parallelism were applied to 

all the operations exploiting the inherent independence. 

However, the calculation of NCDF in Eq. (6) requires 

core-wide reduction which is not fully parallelizable. For 

the NCDF calculation, therefore, region- and group-wise 

resonance integrals (RI) are first calculated in parallel and 

then the reduction operation is performed. 
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3.2 Burnup Calculation 

  

 nTRACER has used Krylov subspace method for the 

matrix exponential solver [5], and recently it implemented 

Chebyshev rational approximation method (CRAM) [6]. 

Among the two solvers, the CRAM solver was chosen for 

the GPU acceleration. The rationale for the selection of 

the solver and optimization techniques will be described. 

 

3.2.1 Iterative CRAM Solver 

 

 For accuracy, CRAM usually employs direct method 

for the linear system solution. However, if the complexity 

of the system is not high, iterative methods are sufficient 

to obtain accurate solutions. It was proved that the target 

accuracy can be achieved with the iterative linear system 

solver in nTRACER burnup calculations. 

 A beneficial feature of the iterative CRAM for GPUs 

is that the number of iterations required remains more-or-

less the same regardless of the regions. This minimizes 

branch divergences in GPU kernels in which each thread 

takes a problem of a region. On the other hand, in Krylov 

solvers, the rank of Hessenberg matrices and the number 

of scaling and squaring operations vary region to region, 

which is not preferred for the GPU acceleration. 

 In addition, the performance of the iterative CRAM is 

in fact superior to the Krylov solver. With proper iterative 

methods, only a few iterations are required thanks to the 

strong diagonal dominance of the systems, which makes 

the inverse calculations computationally cheap. For this 

work, BiCGSTAB with Jacobi preconditioner was applied 

to the iterative CRAM solver. 

 

3.2.2 Optimization of the CRAM Solver 

 

 Conceptually, saving matrix elements contiguously is 

the most natural way. However, the burnup problem is a 

batch of small linear system problems; each system only 

has 3,411 non-zeros but there are hundreds of thousands 

of systems. As the region-wise (system-wise) parallelism 

is applied, a special data layout was required for the GPU-

based ‘batched’ iterative CRAM solver, which is shown 

in Figure 4. 

 The key of the memory layout for the batched systems 

is that the sparsity patterns are identical. Even though the 

elements differ between the regions, the sparsity pattern 

is fixed as it is determined by the nuclide transition map 

given by a common burnup chain library. Utilizing this 

feature, the index vectors are stored in constant memory 

which is a special read-only cache memory accessible by 

all threads.  

 In case of the matrix elements, they are saved in a non-

zero-major ordering scheme; for each non-zero position, 

the corresponding elements of all the systems are stored 

contiguously. As each thread is dealing with a system, the 

threads will read the same non-zero location of different 

systems at each instruction cycle, whose accesses will be 

fully coalesced by the non-zero-major ordering. 

 

 
Figure 4. GPU memory structure in burnup calculations. 

 

4. Results and Discussion 
 

 The performance of the improved GPU-based solver 

is tested with an APR1400 [7] 2D quarter core problem. 

Table 1 shows the specification of the GPU workstation 

deployed. 

 

Table 1. Specification of the workstation. 

CPU 
2 × Intel Xeon E5-2630 v4 

20 Cores, 2.4 GHz (Boost) 

GPU 
NVIDIA GeForce RTX 2080 Ti 

(11 GB GDDR6) 

Compiler 
PGI Fortran 19.4 

Intel Fortran 19.0.4 

 

 In the following, test cases are distinguished by ‘initial’ 

and ‘extended.’ The former resorts to CPUs for the XS 

tasks as it was in the initial version, and the latter extends 

the application range of GPUs to the XS calculations. 

 In each case, the number of CPU cores used is varied 

to examine the impact of the CPU overhead to the overall 

performance. Specifically, the number of CPU cores used 

is changed from 5 to 20 and the performance impact was 

examined. As mentioned in the problem statement, less 

CPU cores are available per plane in 3D than in 2D in the 

current plane-per-GPU topology. As the result, one cannot 

expect a linear scale-up of performance from 2D to 3D. 

Therefore, the situation of extending from 2D to 3D was 

mimicked by using fewer CPU cores for the 2D problem 

instead of directly solving 3D problems. 

 First of all, changes of MOC and subgroup computing 

time with respect to burnup were examined, as illustrated 

in Figure 5. The computing times are the averaged values 

in each burnup step, and two types of computing times are 

indicated; the time for the initial step in which the material 

compositions are fresh and the maximum measured time. 

 As the number of nuclides skyrockets with depletion, 

the effectiveness of GPU-based XS treatments is clearly 

revealed. It can be seen that the ‘initial’ cases suffer from 

significant increase of computing time caused by the XS 

burden inflicted on CPUs. The performance degradation 

is especially critical with reduced number of CPU cores, 

which will likely be the case in 3D calculations. On the 

other hand, the ‘extended’ cases have almost no penalty 

from burnup in performance and substantially outperform 

the ‘initial’ cases as the burnup proceeds. 
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Figure 5. Average computing time of (a) MOC and (b) 

subgroup kernels with respect to burnup. 

 

 The calculation time of each procedure for all cases is 

shown at Figure 6. Note that for burnup calculation, the 

‘CPU ONLY’ case employs a highly efficient Intel Math 

Kernel Library (MKL) based solver [8]. The burnup time 

being larger in the GPU-accelerated cases than the CPU-

based one indicates the necessity of further tuning of the 

GPU-based burnup solver. 

 Besides the MOC and SGFSP procedures, the time for 

XS routines has reduced tremendously. This reduction is 

more noticeable for limited CPU cores, remaining under 

15% of the initial case. Also, the increment of time with 

fewer CPU cores was very small for extended cases. As a 

result, 8 hours of cycle depletion calculation time, which 

was the best result with only CPU cores, has been reduced 

to one and half hour by extensive GPU accelerations. In 

the meantime, the memory loaded on the GPU reached to 

8.5 GB at most. 

 

  
Figure 6. Time share of depletion calculations. 

 

5. Conclusion 
 

 More extensive application of GPUs in nTRACER for 

the XS calculations and the burnup calculations has been 

made. Previous work had focused on developing the GPU 

acceleration algorithms for the main solvers such as MOC, 

CMFD, and axial sweep. Auxiliary routines including XS 

treatments had relied on CPUs primarily for relieving the 

programming burden by utilizing existing routines and 

secondarily for exploiting spare CPU resources. However, 

this revealed limitations in cycle depletion calculations in 

which the computational cost of the auxiliary routines is 

not negligible anymore, which necessitated this work. 

 For a complete GPU offloading of the XS treatment 

routines, all the data in nTRACER have been cast into a 

more compute-friendly memory layout, followed by the 

implementation of corresponding calculation kernels. For 

the GPU acceleration of burnup calculations, an iterative 

CRAM solver applying BiCGSTAB was introduced for 

efficiency, and a special linear system storage scheme that 

takes advantage from the common sparsity of the batched 

systems was devised, which optimizes the memory access 

patterns under the system-wise parallelism. 

 As the result, most of the procedures in nTRACER for 

cycle depletion had been offloaded to GPUs and the CPU 

bottlenecks had been largely resolved. This guarantees a 

fully scalable performance from 2D to 3D regardless of 

the number of CPU cores. 
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