

Progress of GPU Acceleration Module in nTRACER for Cycle Depletion

Han Gyu Lee, Seung Ug Jae, Namjae Choi, Junsu Kang, Han Gyu Joo*

Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
*Corresponding author: joohan@snu.ac.kr

1. Introduction

 Employment of graphics processing units (GPUs) for

scientific computations is now a standard of modern high

performance computing applications. nTRACER [1] had

also demonstrated the GPU acceleration of direct whole-

core calculations and achieved a considerable computing

time reduction with substantially less amount of resources

[2]. Especially, computational hotspots such as method of

characteristics (MOC) solver were effectively accelerated.

 However, extending the GPU acceleration module for

burnup calculations revealed some limitations. Due to the

explosion of nuclides, the cross section (XS) treatments

started to occupy a large portion of computing time. Much

attention was paid to the solvers in the initial development

phase of the GPU acceleration module, while the auxiliary

XS treatments have been handled by CPUs so far.

 Therefore, an extensive GPU offloading work to carry

out the simulation fully on GPUs has been initiated. The

purpose of this paper is to introduce the current status of

the offloading task. Some details of the GPU acceleration

of the burnup solver, which was not the scope of the

previous research, as well as the GPU offloading of the

XS routines which serve as bottlenecks will be explained.

In addition, the up-to-date performance of nTRACER will

be demonstrated.

2. Problem Statement

 The performance of GPU accelerated nTRACER had

been examined only with fresh fuel problems where the

number of nuclides used is small. Under such conditions,

the portion of the XS treatment routines is small enough

to be taken care of by CPUs. However, it does not hold

anymore when burnup calculation comes in, as illustrated

in Figure 1, in which about 60% (XS + most parts of the

subgroup) of the total time is being spent by XS-related

operations.

Figure 1. Computing time share of (a) fresh core steady-

state and (b) cycle depletion calculations.

 As the result, relying on CPUs for treating XS will not

give good results for cycle depletion problems, and it is

now mandatory to port XS treatment routines onto GPUs

to achieve an optimal performance.

 Using CPUs for the auxiliary operations would not be

problematic if enough CPU cores are available. However,

it is not the case in most situations. Figure 2 illustrates the

architecture of our target heterogeneous computer cluster

and the parallelization scheme of nTRACER. Each node

is equipped with multi-core CPUs and several GPUs; in

fact, having multiple GPUs in a node is a common form

of heterogeneous clusters.

Figure 2. Computing resource assignment of nTRACER

for (a) 2D and (b) 3D calculations.

 The problem arises from the plane-wise distributed

parallelism of nTRACER, in which each GPU is assigned

with a plane. For a 2D problem, a single GPU can deploy

all the available CPU cores in a node. However, for 3D

problems, multiple planes will be handled by a node and

the number of available CPU cores per plane is reduced

by the factor of the number of GPUs used.

 If the calculations are carried out entirely on GPUs,

the performance will be fully scalable with the number of

GPUs employed. Therefore, it is necessary to remove the

CPU dependency of the current GPU acceleration module

in nTRACER as much as possible in order to achieve an

optimal and linearly scaling performance.

3. GPU Acceleration Strategies

3.1 XS Treatments

3.1.1 Data Structure Simplification

 Many data in nTRACER are stored with a high level

of abstraction, which involve nested derived types and

arrays of structures (AOS). These complex structures are

oriented to user-friendly code developments but are not

Transactions of the Korean Nuclear Society Virtual Spring Meeting

July 9-10, 2020

friendly to the performance. Accessing data located deep

inside a chain of derived types requires multiple pointer

referencing and is completely segmented.

 Let alone the programmatic restrictions of handling

such complicated data structures on GPUs, it can hardly

satisfy the requirement of memory coalescing, which is

one of the most important optimization requirements for

GPU kernels that adjacent threads should access memory

contiguously. Therefore, all the data should be cast into a

sequence of contiguous memory blocks, as illustrated in

Figure 3.

Figure 3. Data structure simplification process.

 Figure 3 shows an example of unfolding a dataset in

which 2D arrays of different size are contained in each of

the element of a derived type array. All the segmented 2D

arrays are reshaped and gathered to form a monolithic 1D

array. To distinguish the segments on the large 1D array,

a displacement vector which contains the starting indices

of each segment is defined. An array that contains the size

of each segment is also accompanied. This is one of the

simplest cases, and more complicated mapping would be

required for unrolling multi-dimensional datasets.

3.1.2 Macroscopic XS Calculation

 Calculation of macroscopic XS required in neutronics

solvers is schematically straightforward but entails heavy

arithmetic operations. For each region, reaction type, and

group, the microscopic XS of the nuclides are interpolated

by temperature and accumulated with number densities.

The workload is directly proportional to the number of

nuclides contained in each region.

, 11 2 1

, , ,

, 1 ,

, 1
iso iT k

k iso k iso k iso

iso iT iso iT

T T
w w w

T T

+

+

−
= = −

−
 (1)

()1 2

, , , , , , , , , , , 1x k g k iso k iso x iso g iT k iso x iso g iT

iso

N w w  + = + (2)

k : Index of a region

iT : Index of a temperature point

x : A type of reaction
1

,k isow : Interpolation weight at region k and nuclide iso

,iso iTT : Temperature at point iT of nuclide iso

Note that the operations for each region and group are

fully independent. Thus, each thread takes one region and

one group, which yields millions of threads.

3.1.3 Effective XS Generation and Subgroup Fixed Source

Problem (SGFSP)

 In the macro-level grid (MLG) scheme employed by

nTRACER [3], the number of SGFSPs to be solved per

each group is fixed to 8. The heterogeneity effects coming

from the intra-pellet distributions of number densities and

temperatures are handled by temperature consideration

factors (TCF) and number density consideration factors

(NDCF). The SGFSP formulations in the MLG scheme

and definitions of the quantities are as follows:

() ()(), , , , , , , , , ,

,

1
 = for fuel

4

fuel

g m k T g m k k N g k pinavg m k p k g m k

p k

f T f T  



 +  +



 (3)

()TargetReg

, , ,

,

1
 = for clad and AIC

4

m k m k p k m k

p k

  



 +  + 


 (4)

()
()

()

 , , ,

, , ,

 , , ,

,

,

i i i
i in k g k b g m k
i reso

T g m k k i i i
i in k g pinavg b g m k
i reso

N I T

f T
N I T





=

=

=



 (5)

()
()

()

 , , ,

, ,

,i i i
i in k g k b g m k
i reso

N g k pinavg k

g pinavg k kk core k core

N I T

f T
RI T V V


=

 

=


 
 (6)

, ,

, , , , , , , , ,

, ,

 for fuel
1

g m k

e g m k T g m k N g k m p k

g m k

f f



 =  −

−
 (7)

,

, , ,

,

 for clad and AIC
1

m k

e m k m p k

m k




 =  −

−
 (8)

 Generation of effective XS of an isotope involves the

calculation of the un-interfered cross section and then the

resonance interference factor (RIF) of other isotopes by

the RIF library method [4].

() ()

()

*

, , , , , , , , , ,

, , , , ,,

, , ,

, , , , ,

, , , , ,

r r r r

x g n pinavg T g n k k x g n b g n k

r r
n a g n b g n kr alone

eff x g k r r

a g n pinavg b g n k

r r
n a g n b g n k

w T f T

w T

 

 




 

+
=

+





 (9)

 , ,1 1i i j

x g x g

j RIFL

f f 



= + − (10)

 Followed by an extensive restructuring of the legacy

data, region- and group-wise parallelism were applied to

all the operations exploiting the inherent independence.

However, the calculation of NCDF in Eq. (6) requires

core-wide reduction which is not fully parallelizable. For

the NCDF calculation, therefore, region- and group-wise

resonance integrals (RI) are first calculated in parallel and

then the reduction operation is performed.

Transactions of the Korean Nuclear Society Virtual Spring Meeting

July 9-10, 2020

3.2 Burnup Calculation

 nTRACER has used Krylov subspace method for the

matrix exponential solver [5], and recently it implemented

Chebyshev rational approximation method (CRAM) [6].

Among the two solvers, the CRAM solver was chosen for

the GPU acceleration. The rationale for the selection of

the solver and optimization techniques will be described.

3.2.1 Iterative CRAM Solver

 For accuracy, CRAM usually employs direct method

for the linear system solution. However, if the complexity

of the system is not high, iterative methods are sufficient

to obtain accurate solutions. It was proved that the target

accuracy can be achieved with the iterative linear system

solver in nTRACER burnup calculations.

 A beneficial feature of the iterative CRAM for GPUs

is that the number of iterations required remains more-or-

less the same regardless of the regions. This minimizes

branch divergences in GPU kernels in which each thread

takes a problem of a region. On the other hand, in Krylov

solvers, the rank of Hessenberg matrices and the number

of scaling and squaring operations vary region to region,

which is not preferred for the GPU acceleration.

 In addition, the performance of the iterative CRAM is

in fact superior to the Krylov solver. With proper iterative

methods, only a few iterations are required thanks to the

strong diagonal dominance of the systems, which makes

the inverse calculations computationally cheap. For this

work, BiCGSTAB with Jacobi preconditioner was applied

to the iterative CRAM solver.

3.2.2 Optimization of the CRAM Solver

 Conceptually, saving matrix elements contiguously is

the most natural way. However, the burnup problem is a

batch of small linear system problems; each system only

has 3,411 non-zeros but there are hundreds of thousands

of systems. As the region-wise (system-wise) parallelism

is applied, a special data layout was required for the GPU-

based ‘batched’ iterative CRAM solver, which is shown

in Figure 4.

 The key of the memory layout for the batched systems

is that the sparsity patterns are identical. Even though the

elements differ between the regions, the sparsity pattern

is fixed as it is determined by the nuclide transition map

given by a common burnup chain library. Utilizing this

feature, the index vectors are stored in constant memory

which is a special read-only cache memory accessible by

all threads.

 In case of the matrix elements, they are saved in a non-

zero-major ordering scheme; for each non-zero position,

the corresponding elements of all the systems are stored

contiguously. As each thread is dealing with a system, the

threads will read the same non-zero location of different

systems at each instruction cycle, whose accesses will be

fully coalesced by the non-zero-major ordering.

Figure 4. GPU memory structure in burnup calculations.

4. Results and Discussion

 The performance of the improved GPU-based solver

is tested with an APR1400 [7] 2D quarter core problem.

Table 1 shows the specification of the GPU workstation

deployed.

Table 1. Specification of the workstation.

CPU
2 × Intel Xeon E5-2630 v4

20 Cores, 2.4 GHz (Boost)

GPU
NVIDIA GeForce RTX 2080 Ti

(11 GB GDDR6)

Compiler
PGI Fortran 19.4

Intel Fortran 19.0.4

 In the following, test cases are distinguished by ‘initial’

and ‘extended.’ The former resorts to CPUs for the XS

tasks as it was in the initial version, and the latter extends

the application range of GPUs to the XS calculations.

 In each case, the number of CPU cores used is varied

to examine the impact of the CPU overhead to the overall

performance. Specifically, the number of CPU cores used

is changed from 5 to 20 and the performance impact was

examined. As mentioned in the problem statement, less

CPU cores are available per plane in 3D than in 2D in the

current plane-per-GPU topology. As the result, one cannot

expect a linear scale-up of performance from 2D to 3D.

Therefore, the situation of extending from 2D to 3D was

mimicked by using fewer CPU cores for the 2D problem

instead of directly solving 3D problems.

 First of all, changes of MOC and subgroup computing

time with respect to burnup were examined, as illustrated

in Figure 5. The computing times are the averaged values

in each burnup step, and two types of computing times are

indicated; the time for the initial step in which the material

compositions are fresh and the maximum measured time.

 As the number of nuclides skyrockets with depletion,

the effectiveness of GPU-based XS treatments is clearly

revealed. It can be seen that the ‘initial’ cases suffer from

significant increase of computing time caused by the XS

burden inflicted on CPUs. The performance degradation

is especially critical with reduced number of CPU cores,

which will likely be the case in 3D calculations. On the

other hand, the ‘extended’ cases have almost no penalty

from burnup in performance and substantially outperform

the ‘initial’ cases as the burnup proceeds.

Transactions of the Korean Nuclear Society Virtual Spring Meeting

July 9-10, 2020

Figure 5. Average computing time of (a) MOC and (b)

subgroup kernels with respect to burnup.

 The calculation time of each procedure for all cases is

shown at Figure 6. Note that for burnup calculation, the

‘CPU ONLY’ case employs a highly efficient Intel Math

Kernel Library (MKL) based solver [8]. The burnup time

being larger in the GPU-accelerated cases than the CPU-

based one indicates the necessity of further tuning of the

GPU-based burnup solver.

 Besides the MOC and SGFSP procedures, the time for

XS routines has reduced tremendously. This reduction is

more noticeable for limited CPU cores, remaining under

15% of the initial case. Also, the increment of time with

fewer CPU cores was very small for extended cases. As a

result, 8 hours of cycle depletion calculation time, which

was the best result with only CPU cores, has been reduced

to one and half hour by extensive GPU accelerations. In

the meantime, the memory loaded on the GPU reached to

8.5 GB at most.

Figure 6. Time share of depletion calculations.

5. Conclusion

 More extensive application of GPUs in nTRACER for

the XS calculations and the burnup calculations has been

made. Previous work had focused on developing the GPU

acceleration algorithms for the main solvers such as MOC,

CMFD, and axial sweep. Auxiliary routines including XS

treatments had relied on CPUs primarily for relieving the

programming burden by utilizing existing routines and

secondarily for exploiting spare CPU resources. However,

this revealed limitations in cycle depletion calculations in

which the computational cost of the auxiliary routines is

not negligible anymore, which necessitated this work.

 For a complete GPU offloading of the XS treatment

routines, all the data in nTRACER have been cast into a

more compute-friendly memory layout, followed by the

implementation of corresponding calculation kernels. For

the GPU acceleration of burnup calculations, an iterative

CRAM solver applying BiCGSTAB was introduced for

efficiency, and a special linear system storage scheme that

takes advantage from the common sparsity of the batched

systems was devised, which optimizes the memory access

patterns under the system-wise parallelism.

 As the result, most of the procedures in nTRACER for

cycle depletion had been offloaded to GPUs and the CPU

bottlenecks had been largely resolved. This guarantees a

fully scalable performance from 2D to 3D regardless of

the number of CPU cores.

Acknowledgements

This research is supported by National Research Foundation of

Korea (NRF) Grant No. 2016M3C4A7952631 (Realization of

Massive Parallel High Fidelity Virtual Reactor)

References

[1] Y. S. Jung, C. B. Shim, C. H. Lim and H. G. Joo, “Practical

Numerical Reactor Employing Direct Whole Core Neutron

Transport and Subchannel thermal/hydraulic Solvers,” Annals

of Nuclear Energy 62, pp. 357-374, 2013.

[2] N. Choi, J. Kang, H. G. Joo, “Preliminary Performance

Assessment of GPU Acceleration Module in nTRACER,”

Transactions of the Korean Nuclear Society Autumn Meeting,

Yeosu, Korea, Oct. 24-25, 2018.

[3] H. Park and H. G. Joo, “Effective subgroup method

employing macro level grid optimization for LWR applications,”

Annals of Nuclear Energy, 129, pp. 461-471, 2019.

[4] S. Choi, A. Khassenov, D. Lee, “Resonance Self-Shielding

Method with Resonance Interference Factor Library,” Journal of

Nuclear Science and Technology 53(8), pp. 1142-1154, 2016.

[5] A. Yamamoto, M. Tatsumi, N. Sugimura, “Numerical

Solution of Stiff Burnup Equation with Short Half Lived

Nuclides by the Krylov Subspace Method,” Journal of Nuclear

Science and Technology 44(2), pp. 147-154, 2007.

[6] M. Pusa, “Rational Approximations to the Matrix

Exponential in Burnup Calculations,” Nuclear Science and

Engineering 169(2), pp. 155-167, 2011.

[7] H. Hong and H. G. Joo, “Analysis of the APR1400 PWR

Initial Core with the nTRACER Direct Whole Core Calculation

Code and the McCARD Monte Carlo Code,” Transactions of the

Korean Nuclear Society Spring Meeting, Jeju, Korea, May 18-

19, 2017.

[8] N. Choi et al., “Recent Capability and Performance

Enhancements of the Whole-Core Transport Code nTRACER,”

Proceedings of the International Conference on Physics of

Reactors, Cambridge, United Kingdom, Mar. 29 – Apr. 2 (2020).

Transactions of the Korean Nuclear Society Virtual Spring Meeting

July 9-10, 2020

