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1. Introduction 

 

There is an increasing interest in computational 

fuel performance analysis to replace the conservative 

evaluation model calculations by a quantitative 

uncertainty analysis. Important parameters of fuel rod 

performance, such as rod internal gas pressure, peak 

fuel centerline temperature, and cladding hoop strain are 

affected by several uncertainties from scatter of 

measured values, approximations of modelling, 

variation and imprecise knowledge of initial and 

boundary conditions. Their propagation through code 

calculations provides probability distributions and 

ranges for the code results. 

 

The non-parametric statistics method derives 

from the direct Monte Carlo method. The direct Monte 

Carlo uncertainty analysis(UA) method simply samples 

the input distributions N times, then uses the computer 

code directly to generate M key outputs which are used 

to estimate the actual probability distribution of the key 

output. The non-parametric statistics method, however, 

does not attempt to obtain information with regard to 

underneath probability distribution function(PDF) of the 

key output(say, fuel centerline temperature(FCT)), 

ignores the PDF, and uses non-parametric statistics to 

determine a bounding value of the population with a 

given confidence level. 

 

This study is intended to presents CANDU fuel 

performance analysis using non-parametric statistics. 

 

2. Applications of the UA Method 

 

The UA method is the process developed to 

characterize the output variables affected by 

uncertainty(Figure 1)[1]. 

 

 
Figure 1. Uncertainty Propagation through the Code 

 

The error propagation occurs through the code 

which is an ‘imperfect’ tool. In non-parametric statistics 

methods, the uncertainties must characterize the range 

of variation of each parameter and the number of 

performed code runs is a function of the target(selected) 

level of confidence. Sample size selection is usually 

based on Wilks’ tolerance intervals (e.g., 124 runs for 

3th order one-sided 95%/95% tolerance limit)[2, 3]. 

 

Using the in-house CANDU fuel performance 

code being developed in KNF, seven basic steps for 

performing an uncertainty analysis for Wolsong fuel 

performance under normal operating conditions are 

developed and applied as shown in Figure 2. 

 

 
Figure 2. Fuel Performance Analysis Based on 

Non-parametric Order Statistics 

 

Four cases are analyzed: UA Run Set #1 is the 1st 

order tolerance limit runs for 59 runs, UA Run Set #2 is 

the 3rd order tolerance limit runs for 124 runs, UA Run 

Set #3 is the 20th order tolerance limit runs for 554 runs, 

and UA Run Set #4 is the 950th order tolerance limit 

runs for 20,000 runs.  

 

3. UA Analysis Results 

 

 This section describes UA analysis results to 

assess the combined effects of uncertainties 

preliminarily by using a non-parametric order statistics 

approach. 

 

3.1 Input Uncertainty Characterization 

All potentially important uncertain parameters are 

identified and quantified in the uncertainty analysis. The 

results from these phenomena are represented by three 

key output parameters of the code: FCT, internal gas 

pressure(IGP) and sheath strain(STS). Table 1 shows 

the importance rank for the primary phenomena linked 

to each key output parameter. The key parameters are 

selected, according to their ranks, as follows: 

 Manufacturing parameters: UO2 density, 
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diametral clearance, grain size, dish depth, 

sheath wall thickness, pellet surface roughness, 

 

 Model parameters: fission gas diffusion 

coefficient, pellet thermal conductivity, pellet 

thermal expansion, pellet to sheath 

conductivity, and 

 

 Operational parameter: power-burnup history. 

 

Table 1. Phenomena Identification and Ranking 

Table(PIRT) for Fuel Performance Analysis 
 

 
 

3.2 Output Uncertainty Characterization 

 

The results of the propagation of uncertainty are 

processed to get the most accurate possible picture 

about the uncertainty in the outputs. To determine the 

sensitivities of input parameter uncertainties on the 

uncertainties of key output parameter, results are shown 

in Figure 3 from statistical evaluations based on 

Spearman rank correlation coefficient[4]. 

 

 
(a) FCT                             (b) IGP 

 
(c) STS 

Figure 3. Sensitivity Analysis Results Based on 

Spearman Rank Correlation 

 

3.3 Comparison of Results with the Relevant Criteria 

The uncertainty analysis results for four sets of 

runs are summarized in Table 2. The 95%/95% 

tolerance limits of key fuel performance output 

parameters meet the relevant acceptance criteria for all 

the four cases. 

Table 2. Summary of Uncertainty Analysis Results 

 
 

4. Result Summary 

It is proposed that UA combines the various 

sources of uncertainty(manufacturing, model and 

power) in the key input parameters into an uncertainty 

in the key fuel performance output parameters(FCT, 

IGP and STS).  

Four sets of simulation runs are performed, 

20th order UA case(554 runs) is chosen as a reference 

case. A statistical sensitivity analysis using Spearman 

rank correlation has been performed to provide the 

importance of the respective input parameter uncertainty 

on key fuel performance output parameters. 
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