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1. Introduction 

 
During the latest years, neural networks (NN) became 

a solid instrument of researchers in various fields of 

knowledge. Some of strong sides of currently used NN 

are ability to recognize similarities in certain data 

patterns and ability to predict future values based on the 

past values. These abilities could be successfully used in 

the area of Reactor Core Design. 

As shown in studies [1-3], NN are applicable for 

predicting various core design parameters for a 2-

dimensional (2D) layout of Core Loading Pattern (LP). 

In particular, prediction of cycle length and maximum 

pin peaking factor using Convolutional Neural Network 

(CNN) is described in Ref. [1]; prediction of 3D pin 

peaking power factor for the Beginning of Cycle (BOC) 

using CNN (as specified in the title of the paper) is 

shown in Ref. [2]; finally, prediction of LP power 

distribution for the whole cycle using CNN is explained 

in Ref. [3]. 

The main similarity of given literature sources is 

using a 2D shape of LP and, consequently, a 2D CNN 

algorithm. Though a 2D shape is a natural shape of LP 

that is used in Core Design, it may have certain 

limitations and disadvantages in terms of using a NN for 

data prediction (for example, the problem of data 

asymmetry caused by using a quarter core LP as stated 

in Ref. [2], or the problem of data loss due to non-

rectangular shape of a typical LP).  

In attempt to overcome known limitations of 

currently used models and to provide an alternative 

approach, a new Barcode model is developed and 

described in this paper. The model was applied to the 

problem of Critical Boron Concentration (CBC) 

prediction for the whole range of cycle burnups. The 

model description and results of performed calculations 

are given in Section 2 and Section 3, correspondingly. 

The main conclusions and plans for future work are 

provided in Section 4. 

 

2. Description of Barcode Model 

 

As stated in the previous section, a typical LP shape 

usually has two dimensions. As a result, it can be treated 

similarly to a typical digital image. However, there is a 

significant difference between the problem of digital 

image recognition (with pixel input) and prediction of 

certain design parameters of a LP (with numerical data 

input). In particular, the overall importance of the data 

in the first case is much lower than in the second case 

due to naturally existing noise in digital images. 

Another problem could be caused by the process of 

convolution itself. In case of using a 2D convolution 

filter of size 3, a total of 9 cells is being involved, while 

in case of using the same filter size for a 1-dimensional 

(1D) convolution filter, only 3 cells are being involved. 

Therefore, the expected data loss in case of using a 2D 

model should be higher compared to the 1D alternative. 

Finally, the typical algorithm of CNN includes the so-

called Flattening of data (i.e. converting the data into 

1D format) before moving to fully connected layers for 

final evaluation. Given the previous data losses during 

the 2D convolution, the overall accuracy of such a 

calculation may be not sufficient for certain applications. 

In order to test a different approach that could be less 

affected by given problems, a Barcode model is 

developed. In this model, all Fuel Assemblies (FA) of a 

studied LP are given individual ascending numbers as 

shown on Figure 1. 

 

 
Fig. 1. A sample LP with one of possible numeration orders 

for all Fuel Assemblies before being converted into Barcode 

format. 

 

After the first step, all FA data that is intended for 

being used in the model should be given in one long line, 

following the strict sequence of individual numbers. 

This order should be carefully maintained for all used 

data (training, testing, validation, independent, etc.). 

The new layout would have a 1D shape as shown on 

Figure 2. 
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Fig. 2. A flattened barcode-shaped layout of the sample LP.  

 

For the purpose of using a NN, all datapoints should 

be normalized (usually in range (0,1) as floating-point 

values). In our test case, we used fuel composition 

number densities as input points. A printout of a typical 

input for such a model (with normalized values used for 

grayscale color assignment) is shown on Figure 3. 

 

 
Fig. 3. A printout of all input nuclide number densities in all 

Fuel Assemblies of a studied LP converted into Barcode 

format (the values are normalized in range (0,1) and used for 

grayscale color assignment). 

 

The picture given on Figure 3 looks similar to the 

barcodes used for labeling products in other industries. 

Therefore, the name of the model is chosen as the 

Barcode Model.  

As a result of following the Barcode Model, each LP 

with all intended input parameters of each FA listed in 

given order should have a unique “barcode”, which can 

be used as an input for a CNN. The example of using 

given model for CBC prediction is explained in the next 

Section. 

 

3. Simulation and Results 

 

The simulation process and results of CBC prediction 

based on all nuclide number densities converted into 

Barcode format are described in this Section.  

For simulation, a CNN with 4 1D Convolution layers, 

2 Dropout layers, 4 Pooling layers and 5 fully connected 

Dense layers was chosen. All activation layers in the 

model were chosen as of “sigmoid” type. The initial 

dataset was built using the values of nuclide number 

densities and CBC values for all chosen points of cycle 

burnup. The total number of 500 quarter-core LPs for 

OPR1000 reactor was automatically generated using 

STREAM/RAST-K 2.0 codes developed by Ulsan 

National Institute of Science and Technology (UNIST) 

[4]. The given data consisted of 10500 individual 

burnup points. 450 LPs (or 9450 burnup points) were 

used for training the model, 25 LPs (or 525 burnup 

points) were used for testing, and 25 last LPs (or 525 

burnup points) were used for validation. The model was 

trained for 400 epochs. The details of the model are 

given in Table I, and the results of CBC values 

prediction using validation data are  shown on Figure 4. 

 

 

Table I: Parameters of the trained model 

Layer 

Output Shape 

(rows, 

columns, 

number of 

filters) 

Number of 

parameters 

Conv1D 1 (N, 2132, 4) 16 

MaxPooling1D 1 (N, 1066, 4) 0 

Dropout 1 (N, 1066, 4) 0 

Conv1D 2 (N, 1066, 8) 104 

MaxPooling1D 2 (N, 533,8) 0 

Conv1D 3 (N, 533,16) 400 

MaxPooling1D 3 (N, 266,16) 0 

Dropout 2 (N, 266,16) 0 

Conv1D 4 (N, 266,32) 1568 

MaxPooling1D 4 (N, 133,32) 0 

Flatten (N, 4256) 0 

Dense 1 (N, 1024) 4359168 

Dense 2 (N, 512) 524800 

Dense 3 (N, 256) 131328 

Dense 4 (N, 128) 32896 

Dense 5 (N, 1) 129 

 

 
Fig. 4. Prediction of the values of CBC based on fuel 

composition data (purple lines (outer) – 10% error border, 

green lines (inner) – 5% error border) 

 

As shown on Figure 4, the prediction results mostly 

stay within the 5% error limit (in between the green – 

inner - lines), showing decrease of accuracy only in the 

End Of Cycle (EOC). The reason for that could be a 

small used number of training datapoints, which does 

not sufficiently cover the low CBC area. Including all 

the obtained points, a total of 70.47% of validation 

points stay within the 5% error border. As for the area 

above 400 ppm, more than 97% of all tested points stay 

within the 5% error area of the graph.  

In order to test the model using a different dataset, 10 

LPs of the same reactor type but for 5 cycles forward 

were generated using random shuffling of random 

number of FAs. The new data is not only built based on 

different fuel composition but also is using a different 
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type of FA (Guardian in the original dataset and PLUS7 

in the new dataset). It should be also noted that the 

determined cycle length for the new dataset is different 

from the original training model dataset. Therefore, we 

expected to see less accurate prediction for the EOC 

part of the cycle (combined with the less accurate result 

for the EOC found during validation run and shown on 

Figure 4, which indicates the imperfection of the used 

training dataset stated above).  

The result of CBC prediction for given data (5 most 

representative FAs that show the overall prediction 

trend) is given on Figure 5. 

 
Fig. 5. Predicted values of CBC (red line) compared to the 

exact values of CBC (green dashed line). 

The most significant difference is found in the EOC 

part of the graphs. This difference could be explained 

by the different value of the cycle length for the original 

dataset cycle and the new dataset cycle (caused by using 

different type of FA and fuel compositions). In future 

studies, we expect to generate more training datapoints 

and more validation datapoints for different cycles for 

better testing of the CNN model developed in this study.  

 

 

4. Conclusions 

 

In this study, a new Barcode Model for predicting 

various Reactor Core Design Parameters was developed 

and tested. The model accuracy in predicting the CBC 

values for given input data was found sufficient for most 

of the cycle, showing a decrease in the very end of cycle. 

However, the determined loss of accuracy could 

primarily be caused by the imperfection of used dataset, 

which is expected to be improved in future studies. 

Finally, future work for this study should include a 

direct comparison of conventional 2D model against the 

newly developed Barcode Model performed using the 

same large dataset. This would allow to fairly evaluate 

both approaches and determine their strong and weak 

points. 

 

Acknowledgement 

 

This work was supported by KOREA HYDRO & 

NUCLEAR POWER CO., LTD (No. 2018-Tech-07) 

 

REFERENCES 

 
[1] H. Jang, H.C. Lee, Prediction of Pressurized Water 

Reactor Core Design Parameters Using Artificial Neural 

Network for Loading Pattern Optimization, Transactions of 

the Korean Nuclear Society Spring Meeting, Jeju, Korea, May 

23-24, 2019. 

[2] Y. Nam, J.Y. Lee, H.J. Shim, Convolutional Neural 

Network for BOC 3D Pin Power Prediction, Transactions of 

the Korean Nuclear Society Spring Meeting, Jeju, Korea, May 

23-24, 2019.  

[3] J. Lee, Y. Nam, H.G. Joo, Convolutional Neural Network 

for Power Distribution Prediction in PWRs, Transactions of 

the Korean Nuclear Society Spring Meeting, Jeju, Korea, May 

23-24, 2019. 

[4] J. Choe, S. Choi, P. Zhang, J. Park, W. Kim, H. Shin, H. 

Lee, J. Jung, D. Lee, Verification and validation of 

STREAM/RAST-K for PWR analysis, Nuclear Engineering 

and Technology, Vol.51, No.2, pp.356-368, 2019. 


