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1. Introduction 

 
In industrial systems’ operations such as avionics, 

fossil-fuel power plants, nuclear power plants (NPPs), 

and oil and gas installations, faults and failures can 

occur in sensors, equipment, and processes which can 

have impact on safety and on the performance of the 

system. Hence, monitoring and signal validation of 

those sensors installed for the safety parameters during 

operation is extremely important. 

Even though a verse variety of model-based 

approaches to achieve condition monitoring purposes 

are available in literature [1], their application in large 

complex plants is sometimes infeasible and unrealistic 

because they require rigorous process models which are 

not usually available for complex systems. On the other 

hand, data-driven methods [2], an alternative to model-

based approaches, use historical data measured and 

recorded during process operations to build an 

empirical model. Such methods include auto associative 

kernel regression (AAKR). Typically, data-driven 

models are developed under steady state plant 

conditions belonging to most of uptime, but it is 

significant to have condition monitoring during 

transient operations, considering the fact that most 

industrial systems’ operations are time-varying. 

Transient operations are any non-steady state, time-

varying signal conditions, such as the start-up, 

shutdown, and load following modes of the system. 

The AAKR formulation of kernel regression (KR) 

model – a special and simple form of Gaussian process 

regression (GPR), has been successfully used in actual 

NPP steady-state operations for instrument channel 

calibration and condition monitoring [2], easy to use, 

and less computationally demanding. However, KR has 

limitations and seems inappropriate in transient 

operations because, it is based on the unilateral kernel 

and lack temporal information in that only the current 

query vector has effect on the model. Any previous 

information leading to the current query vector is 

completely ignored. Although this is acceptable and 

even preferable for many applications, it is not 

acceptable for transient operations, in which the 

previous information directly affects the next data point. 

In view of the above, the authors developed several 

methods which are simple, effective, easy to use, and 

capture both the spatial and temporal dependencies in 

the time-series data, for efficient implementation of 

process states validation and condition monitoring not 

only in steady-state operations but also in transient 

operations of industrial systems. These methods are 

summarized in this paper. 

 

3. Gaussian Process-based Methods: An Overview 

 

3.1 Gaussian process regression model 

Gaussian process is a tool that has been successful in 

building surrogate models in which the GPR extends 

multivariate Gaussian distributions (MGD) to infinite 

dimensionality. It represents function by letting the data 

determine the structure of the model, less parametric, 

and can be formulated in terms of a kernel smoother, 

using an equivalent kernel or weight function. Hence, it 

can be viewed as equivalent to KR approaches 

prevalent in statistics, which have been adapted for use 

in on-line monitoring. Given some noisy observations 

of a dependent variable 𝐲 ∈ ℝ𝑀×1  at certain values of 

independent variable 𝐱 ∈ ℝ𝑀×1, the goal is to estimate 

the dependent variable 𝑦̂𝑞  at a new value of 𝑥𝑞 . Each 

observation y can be thought of as related to an 

underlying function f(x) through a Gaussian noise 

model: 

y = 𝑓(𝑥) +𝒩(0, 𝜎𝑛
2) (1) 

where f(x) is true function of y which is to be search 

for through regression, and 𝒩(0, 𝜎𝑛
2) is a measurement 

noise distribution with mean of 0 and variance of 𝜎𝑛
2. 

Since the key assumption in GP modeling is that, the 

data can be represented as a sample from a MGD, we 

have 

[
𝑦
𝑦𝑞
] ~ 𝒩 (𝟎, [

𝐾 𝐾𝑞
𝑇

𝐾𝑞 𝐾𝑞𝑞
]) (2) 

where T indicates matrix transposition, and K, 𝐾𝑞  and 

𝐾𝑞𝑞  are 𝑀 ×𝑀  covariance matrix, 1 × 𝑀  covariance 

vector and 1 × 1 covariance vector, respectively, which 

are all  computed from covariance kernel function: 

𝑘(𝑥, 𝑥′) = 𝜎𝑓
2𝑒𝑥𝑝 [

−𝑑(𝑥, 𝑥′)2

2𝑙2
] (3) 

where 𝑑(𝑥, 𝑥′)  is the distance between observations, 

and l and 𝜎𝑓
2  are bandwidth and variance of the true 

function, respectively, which are to be determined 

during training. Our interest is in the conditional 

probability, 𝑝(𝑦𝑞|𝐲) that given the data, how likely is a 

certain estimation for 𝑦𝑞 . From Eq. (2), it can be 

showed that this probability follows the following 

Gaussian distribution: 

𝑦𝑞|𝐲 ~ 𝒩(𝐾𝑞𝐾
−1𝐲, 𝐾𝑞𝑞 − 𝐾𝑞𝐾

−1𝐾𝑞
𝑇) (4) 

Thus, it is very clear from Eq. (4) that the best estimate 

of 𝑦𝑞  is the mean of the distribution. Hence, the GPR 

estimation is given as 

𝑦̂𝑞 = 𝐾𝑞𝐾
−1𝐲 (5) 
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If 𝐰 = 𝐾𝑞𝐾

−1  is defined as vector of weights, i.e., 

𝐰 ∈ ℝ1×𝑀, Eq. (5) can be written as 

𝑦̂𝑞 = 𝐰𝐲 (6) 

This implies that the GPR is a weighted sum of the 

historical observations [3], which is equivalent to KR as 

shown in the next section. 

 

3.2 Kernel regression model 

 

KR is the process of estimating a parameter’s value 

by calculating a weighted average of the historical 

observations. It is generally and more compactly 

represented by the Nadaraya-Watson estimator as [3] 

𝑦̂𝑞 =
∑ 𝑘𝑞𝑖(𝑥𝑖 ,  𝑥𝑞)𝑦𝑖
𝑀
𝑖=1

∑ 𝑘𝑞𝑖(𝑥𝑖 ,  𝑥𝑞)
𝑀
𝑖=1

 (7) 

where 𝐾𝑞  1 × 𝑀  Kernel vector whose elements are 

calculated from kernel function with bandwidth h: 

𝑘(𝑥𝑖 , 𝑥𝑞) = 𝑒𝑥𝑝 [
−𝑑(𝑥𝑖 , 𝑥𝑞)

2

2ℎ2
] (8) 

Equation (7) can be re-written as 

𝑦̂𝑞 =∑
𝑘𝑞𝑖(𝑥𝑖 ,  𝑥𝑞)

∑ 𝑘𝑞𝑖
𝑀
𝑖=1 (𝑥𝑖 ,  𝑥𝑞)

𝑦𝑖

𝑀

𝑖=1

=∑𝑤𝑖𝑦𝑖

𝑀

𝑖=1

= 𝐰𝐲 (9) 

𝐰 ∈ ℝ1×𝑀  is a vector of weights whose elements 

𝑤𝑖 = 𝑘𝑞𝑖 ∑ 𝑘𝑞𝑖
𝑀
𝑖=1⁄ . It can be seen that, the main 

different between KR and GPR is the 𝑀 ×𝑀 

covariance matrix K whose its diagonal elements is 𝜎𝑓
2 

and off-diagonal elements are nearly zeros. However, if 

the normalizing factor, ∑ 𝑘𝑞𝑖
𝑀
𝑖=1  in Eq. (9) can be 

thought of as an approximate value of 𝜎𝑓
2, Eqs. (9) and 

(6) can be assumed to be equivalent and KR can be said 

to be a simpler and less computational form of GPR. 

Several formation of KR can be used, such as AAKR, 

inferential KR, and hetero-associative KR. The AAKR 

formulation is the most suitable for process monitoring. 

Despite the simplicity of KR and its successful 

applications in steady-state equipment condition 

assessments, it is obvious from its mathematical 

modelling that it lacks temporal information, which is 

crucial in transient operations. The major shortcoming 

of KR in those conditions is that each predicted signal 

variable from the query input vector are the same in 

most cases: the estimated takes the average of those 

signal variables when the training set contains similar 

training patterns for all of those variables. This problem 

has been clearly depicted in Fig. 1. In Fig. 1, to estimate 

the variable y given x1 and x2, the predictor vector at the 

point A which occurs at time t4 is identical to the 

predictor vector at point B which occurred at t8. In this 

case, the corresponding values of y’s, y(t1) and y(t2) at 

the respective data points would not be estimated 

correctly by KR. This is because the distances 

computed at both points are the same which, in turn, 

will result in KR inability to differentiate between the 

two data vectors. 

 
Fig. 1. Problem definition (estimation of y given x1 and x2) 

 

Therefore, a new, related, and yet simple model is 

needed to capture both the spatial and temporal 

dependencies in the data for efficient implementation of 

process monitoring in transient operations. This led to 

the development of several methods that will be briefly 

discussed in the next section. 

 

4. The Developed Methods 

 

In this section, the methods developed to alleviate 

those issues in KR are summarized. 

 

4.1 Kernel regression using derivatives 

 

Here, the conventional KR is modified through the 

development of time-dependent transformation equation 

which is derived from the Taylor series expansion [4]. 

𝑥(𝑡 + ℎ) = 𝑥(𝑡) + ℎ
𝑑𝑥(𝑡)

𝑑𝑡
+
ℎ2

2!

𝑑2𝑥(𝑡)

𝑑𝑡2
+⋯ (10) 

From the Taylor series of Eq. (10), the function at 

𝑥(𝑡2) can be approximated as 

𝑥(𝑡2) = 𝑥(𝑡1) + (𝑡2 − 𝑡1)
𝑑𝑥

𝑑𝑡
 (11) 

with 𝜂 = (𝑡2 − 𝑡1) , which is the time step interval. 

Equation (11) can then be rearranged as 

𝑥(𝑡𝑖) − 𝑡𝑖
𝑑𝑥

𝑑𝑡
= 𝑥(𝑡𝑖−1) − 𝑡𝑖−1

𝑑𝑥

𝑑𝑡
. (12) 

We then substituted 

𝜓i = 𝑡𝑖
𝑑𝑥

𝑑𝑡𝑖
 (13) 

with assumption that 

{
  
 

  
 

𝑑𝑥

𝑑𝑡1
≠
𝑑𝑥

𝑑𝑡2
 𝑏𝑢𝑡

𝑑𝑥

𝑑𝑡
|
𝑡=𝑡1

≈
𝑑𝑥

𝑑𝑡1
, 𝑎𝑛𝑑

𝑑𝑥

𝑑𝑡
|
𝑡=𝑡2

≈
𝑑𝑥

𝑑𝑡2

  (14) 

Thus, our proposed transformation dynamic equation 

is given by 

𝜓𝑖 ≅ 𝜓𝑖−1 + (𝑥𝑖 − 𝑥𝑖−1) (15) 

where 𝜓𝑖  is the resulting transformed value of the 

current data point xi and 𝑑𝑥 𝑑𝑡⁄
𝑖−1 is the first derivative 

at time ti-1 of immediate past data point xi-1. It can be 

observed that, the transformed output 𝜓𝑖  has the same 
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unit as that of the original value 𝑥𝑖 . In this case, the 

information from previous input vectors is incorporated 

into the KR through the gradient, the time, and the 

difference between the previous and the current input 

vector. This in fact will gives a more details 

representation of the estimations compare to that of the 

conventional KR that ignored any information leading 

to the current data point. The derivative at each data 

point can be approximated using backward finite 

difference derivative approximation. 

Both historical/memory data and the query input data 

should be transformed to a new space defined by Eq. 

(15). The transformed data can then be used to compute 

the similarity and kernel weights. By re-writing Eq. (9), 

the estimation of the query input can be performed as 

follows: 

𝑦̂𝑞 =∑
𝑘𝑞𝑖(𝜓𝑖 ,  𝜓𝑞)

∑ 𝑘𝑞𝑖
𝑀
𝑖=1 (𝜓𝑖 ,  𝜓𝑞)

𝑦𝑖

𝑀

𝑖=1

 (16) 

The transformed signal will be shifted to a new space 

difference from its original signal. With this 

transformation, the data points at A and B in Fig. (1) 

could be distinguished and the correct estimates from 

Eq. (16) can be made. 

 

4.2 Kernel regression aggregating bilateral directions 

 

Having developed the modified KR presented in 

Section 4.1 and found to have resolved the issues, we 

discovered that, during on-line implementation, the 

query time input (Eq. (13)) monotonically increases and 

becomes indefinite. Although this is known for a 

particular historical data set within the specific period 

of time at which the data is collected, {0 ≤ 𝑡𝑞 ≤ 𝑇}, it 

is virtually impossible to collect historical data that 

covers the operational lifespan of large industrial 

components. In this regards, we propose a novel model 

that we call weighted-distance Auto Associative 

Bilateral Kernel Regression (AABKR) [5, 6]. 

Given a sequence of historical p-dimensional time-

series data 𝐗 ∈ ℝ𝑀×𝑝 , with M observation sequence 

vectors, and xi,j represents the ith observation of the jth 

variable. For every on-line query observation, 𝐱𝑞
∗ ∈

ℝ1×𝑝 , the prediction of the signal is performed 

according to the formulation 

𝑥̂𝑞,𝑗
∗ =

∑ (𝑘𝑖
𝑓
⊛ 𝑘𝑖

𝑡)𝑥𝑖,𝑗
𝑀
𝑖=1

∑ (𝑘𝑖
𝑓
⊛𝑘𝑖

𝑡)𝑀
𝑖=1

 (17) 

where 𝑘𝑖
𝑓
⊛ 𝑘𝑖

𝑡 = 𝑘𝑖
𝑎𝑏  is an adaptive bilateral kernel 

evaluated at 𝐱𝑖. The symbol, ⊛ represents the bilateral 

kernel combination operator that combined the feature 

and temporal kernels together, formulated as 

𝑘𝑖
𝑎𝑏 = 𝑘𝑖

𝑓
⊛𝑘𝑖

𝑡

= {

𝑘𝑖
𝑓
∗ 𝑘𝑖

𝑡 ,     𝑠 ≤ 𝑖 ≤ 𝑀 & 𝑖 ≠ 𝜀

(𝑘𝑖
𝑓
+ 𝑘𝑖

𝑡)

2
, 𝑖 = 𝜀                        

 ; 𝑖𝜖[𝑠,𝑀] 
(18) 

where s is a moving window length for the require data 

points use to compute backward-difference derivative 

approximation, 𝜀 is a time position index (required for 

the temporal distance calculation which is determined 

on-line using derivative-based comparator [5,6]) of the 

nearest vector in memory data vectors to the query on-

line vector observation, 𝑘𝑖
𝑓

 and 𝑘𝑖
𝑡   are feature kernel 

and temporal kernel, respectively. The two kernels are 

calculated as follows: 

𝑘𝑖
𝑓
= 𝑒𝑥𝑝 (

−𝑑𝑖
2

2ℎ𝑓
2 ) (19) 

𝑘𝑖
𝑡 = 𝑒𝑥𝑝 (

−𝛿𝒊
2

2ℎ𝑡
2 ) (20) 

where hf is a kernel bandwidth for feature preservation, 

which controls how much the nearby memory feature 

vector is weighted, ℎ𝑡  is the bandwidth for the time-

domain preservation, which can serve as noise rejection 

and controls how much the nearby times in the memory 

vectors are weighted, 𝑑𝑖 = 𝑑𝑖(𝑿𝑖 ,  𝒙𝑞
∗ ) = ‖𝑿𝑖 −  𝒙𝑞

∗‖
1
 

is a feature distance, and 𝛿𝒊 is temporal distance, which 

accounted for the variation in time at which the query 

vector is observed [5]. It can be seen in Eq. (17) that 

both the spatial and temporal information are captured 

in the model during prediction, and thus will provide a 

better signal estimation, particularly during normal 

process transient operations than that of KR. 

The proposed weighted-distance AABKR has been 

applied to a start-up transient operation of a pressurized 

water reactor (PWR) NPP. Due to unavailability of real 

data from the plant, we used a real-time simulator data 

collected from the compact nuclear simulator (CNS) 

during heating from the cool-down mode (start-up 

operation) as a normal start-up transient operation for 

building the model. Six sensors’ process variables from 

the reactor coolant system (RCS) were selected for 

monitoring during this operation: S1 (cold leg 

temperature), S2 (core exit temperature), S3 (hot leg 

temperature), S4 (safety injection flow) S5 (residual 

heat removal flow) and S6 (sub-cooling margin 

temperature). The data consist of 1000 observations 

sequentially collected at constant time intervals of 1s. 

Because these data are fault-free, we simulated 

abnormal conditions on them by adding fault to a 

particular sensor data at a time. To do this, we 

conducted a thousand-run Monte Carlo simulation 

experiment on this dataset, of which a run consist of 

1000 observations of faulty dataset. In order to simulate 

a realistic scenario for the fault detection capability of 

the proposed model, the fault magnitude was a random 

number sampled from a bimodal uniform distribution, 

𝑈([−10,−2] ∪ [2,10]), and added to a variable. Also, 

the sensor variable to be in fault at a particular time step 

during a single run was uniformly random among the 

six possible sensor variables. At the end of each run, 

true alarm rate (TAR): the rate of fault detection in only 

a sensor that actually has the fault without fault being 

detected in other fault-free sensors, is calculated.  Fig. 2 

shows the distribution of the TARs of the thousand-run 

Monte Carlo experiment for AAKR (Fig. 2(a)) and the 
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weighted-distance AABKR (Fig. 2(b)). The means of 

these distributions are 61.4% and 99.8% for AAKR and 

weighted-distance AABKR, respectively. Thus, for 

single-sensor faults, the proposed model, on average, 

had a significantly higher TAR than AAKR, and can be 

used to validate the sensors’ status during operation. 

 

4.3 Bilateral kernel regression using dynamic time 

warping 

The proposed method discussed in Section 4.2, 

having been successfully applied to the start-up 

transient operation, was tested for its generality by 

applying it to a typical steady-state operation. It was 

discovered from the result that its performance suffered 

significantly from the spillover effects (faults are 

detected in process sensors different from those actually 

affected by the faults). This was due to wrong 

identification of time position index, 𝜀 using derivative-

based comparator, as the derivative calculated from the 

typical steady-state process is nearly constant, where 

the process change in time is almost negligible. To this 

end, a novel approach based on dynamic time warping 

(DTW) for the identification of time position index has 

been developed for efficient implementation of 

AABKR applicable not only in transient process 

operations but also in steady-state operations [3]. The 

basic idea in using DTW instead of derivatives is that, 

the query input of time window length s will be 

compared with the sequence of time-series memory data 

to find the optimal alignment between the two time 

sequences dynamically. The time location within the 

memory time-series data where the optimal alignment is 

located will have the smallest DTW distance compare 

to other locations. With this, the correct identification of 

time position index can be obtained. Another 

importance modification is that, by extending the 

adaptive approach of combining the two kernels, a 

robust bilateral kernel evaluation algorithm has been 

proposed, which dynamically compensates for faulty 

sensor inputs, resulting in a more robust model with less 

spillover during monitoring. 

 

 

 

5. Conclusions 

This paper discussed several methods developed for 

signal validation and condition monitoring during 

transient operations, in which several attempts have 

been successfully carried out and been applied to 

simulation dataset for transients of a PWR NPP. It 

turned out that, the conventional GPR can be adjusted 

for various purposes, and in steady-state as well as 

transient conditions is maintained higher. Furthermore, 

the accuracy, robustness, and computational time need 

to be improved and verified. 
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Fig. 2. Histograms of the TARs (true alarm rates) for a thousand-run Monte Carlo experiment 


