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1. Introduction 

 
In the present fourth industrial revolution, the degree 

of automation is growing significantly and enormous 

amount of time-series data are collected from industrial 

systems for analysis. The demand for robust and 

resilient performance has led to the use of signal 

validation and on-line monitoring schemes to monitor 

sensors and equipment conditions using data-driven-

based models built by those time-series data. However, 

most data-driven models are developed and applied 

under steady-state or time-invariant conditions since 

this belongs to most of system’s uptime, but it is vital to 

have condition monitoring during transient operations 

as well, which has been less concerned. In this study, 

transient operations are any non-steady state but time-

varying within normal operating conditions, such as 

start-up, shutdown, and load following modes of the 

system [1,2]. Recently, Ahmed et al [3] proposed a 

novel data-driven method, weighted distance Auto 

Associative Bilateral Kernel Regression (AABKR), for 

on-line monitoring during transient operation which has 

been successfully applied to the start-up transient of a 

nuclear power plant (NPP). However considering the 

availability of massive industrial time-series data or big 

data, in this work, the authors seek to explore the 

possibility and applicability of the deep learning 

techniques for signal validation and condition 

monitoring of safety parameters and sensors in NPPs 

during transient operations. Deep learning is a branch of 

machine learning algorithms that uses a cascade of 

many layers of non-linear processing units for feature 

extraction and transformation. There are various deep 

learning architectures, which include Restricted 

Boltzmann Machine (RBM) based deep belief network 

(DBN), Convolutional Neural Network (CNN), deep 

Auto-encoders, and deep Recurrent Neural Network 

(RNN). Since sensor data is a time-series data, this 

work chose to use a deep recurrent neural network 

(RNN) architecture based on deep learning technique, 

long short-term memory (LSTM) to capture the time-

varying dependencies of transient data for the purpose 

of sensors’ signal validation and condition monitoring. 

The deep LSTM model is developed in form of 

autoencoder: the encoder-decoder network, such that 

the multi-dimensional sensors signals can be effectively 

reconstructed on-line for the purpose of condition 

monitoring. 

 

 

2. Methods and Results 

 

In this section the core algorithm of the LSTM and 

the proposed autoencoder architecture for sensors’ 

signal validation and monitoring in transient operation 

of NPP are described. At the end of this section, the 

application of the proposed method to a start-up 

transient of a NPP for sensors’ condition assessment are 

presented and discussed. 

 

2.1 LSTM Neural Network 

 

RNN is a special type of neural network in which the 

output of hidden layers will return recurrently as input. 

This implies that the hidden layers have self-

connections to itself across time as shown in Fig. 1. 

Therefore, unlike conventional artificial neural network 

that ignore dependencies among time-series data, RNN 

has a strong ability in processing sequential and time-

dependent data. Mathematically, the mechanism of 

RNN cell at time 𝑡 is described by the following 

equations: 

ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝑈𝑥𝑡 +𝑊ℎ𝑡−1 + 𝑏ℎ) (1) 

𝑜𝑡 = 𝑉ℎ𝑡 (2) 

 

 
Fig. 1. The architecture of RNN cell 

 

where ℎ𝑡 and ℎ𝑡−1 are the states of RNN cells of current 

time 𝑡 and previous time 𝑡 − 1, 𝑥𝑡 is the input at time 𝑡, 
𝑜𝑡  is the output at time 𝑡 , 𝑊  is the weight matrix 

between the hidden states at 𝑡 and 𝑡 − 1, U and V are 

the weight matrices from input to the hidden state and 

from the hidden sate to the output, respectively,  and 𝑏ℎ 

is a bias input. Due to vanishing gradient problem 

during training based on back propagation through time 

(BPTT), RNN has no ability to capture long-term 

dependencies in the data. To alleviate this problem, 

Hochreiter and Schmidhuber [4] proposed LSTM based 

on the RNN architecture, where the conventional RNN 

hidden cells are replaced by the LSTM network 

structure. In every LSTM neuron, there exists three 

gates function: input gate, forget gate, and output gate, 

which ensure that the LSTM neuron has the ability to 

discover and retain long-term dependencies. 
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The LSTM architecture is depicted in Fig. 2. As 

shown in the figure, the LSTM neuron provides 

nonlinear mechanism for controlling information flow 

into and out of the LSTM cell. The forget gate 

determines the information that need to be discarded or 

forgotten from the previous cell states. The input gate 

determines what information will be allowed to enter 

into the neuron state. Finally, the output gate decides 

the information to be passed out of neuron state. 

Mathematically, the representation of the LSTM neuron 

is as follows: 

 
Fig. 2. The architecture of LSTM neuron 
𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (3) 

𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (4) 

g𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑔[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑔) (5) 

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (6) 

𝐶𝑡 = 𝑓𝑡 ⊙𝐶𝑡−1 + 𝑖𝑡 ⊙g𝑡  (7) 

ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝐶𝑡) (8) 

where 𝑊𝑓, 𝑊𝑖, 𝑊𝑔 and 𝑊𝑜 are weights of the forget gate, 

input gate, input node and output gate, respectively, and 

𝑏𝑓, 𝑏𝑖, 𝑏𝑔 and 𝑏𝑜 are their corresponding bias inputs; 𝑓𝑡, 

𝑖𝑡 , g𝑡  and 𝑜𝑡  are the output of forget gate, input gate, 

input node and output gate; ℎ𝑡−1  and  ℎ𝑡  are the 

previous and current out of LSTM neurons at time 𝑡 and 

𝑡 − 1; 𝐶𝑡−1  and 𝐶𝑡  are the LSTM cell states at time 𝑡 
and 𝑡 − 1; ⊙ represents the pointwise multiplication; 𝜎 

and 𝑡𝑎𝑛ℎ are sigmoid and tanh activation functions. 

 

2.2 Proposed Deep LSTM-based autoencoder model for 

signal validation 

 

In this paper, a deep LSTM-based autoencoder model 

is developed to automatically capture the sequential 

time-series sensor data and effectively reconstruct on-

line signals for condition monitoring. Autoencoder is an 

encoder-decoder model which is basically a kind of 

neural network composed of a hidden layer that sets the 

target to repeat the input. The hidden units are often 

viewed as the higher-dimensional representation of the 

input, thus, hidden units is always less than input 

dimension. Therefore a deep autoeconder can be built 

by stacking layers, in this case, LSTM layers. The 

architecture of the proposed model is depicted in Fig. 3. 

With the selection of the time window length r, the 

time-series input data to the proposed model is built 

into a two-dimensional array in which the number of 

rows and columns of the matrix array are p and r 

respectively, where p is the number of sensors 

parameters to be monitored and r is the time window of 

sampling data. Multiple LSTM layers are stacked to 

form a deep autoencoder in order to carry out deep 

exploitation of the sensor data, and the data are output 

from the lower layer to the LSTM neurons in the next 

layer, hence, the data flow at each LSTM layer is time-

dependent. In every LSTM layer, there are many LSTM 

neurons to capture long-term dependencies of sensor 

time-series data. At each LSTM layer, LSTM cells 

established information exchange with each other in 

order to understand clearly self-connection across 

sequential time-series data. The stacked LSTM 

autoencoder architecture consists of two architectures: 

the encoder and decoder. The encoder reads the input 

sequence through several LSTM layers and encodes it 

into a fixed-length vector. While, the decoder decodes 

the fixed-length vector and outputs the predicted 

sequence through several LSTM layers. With this, the 

on-line signal reconstruction can be achieved. At the 

end of the kth LSTM layer of the decoder, a fully 

connected dense layer is built to translate the decoded 

information that has been sequentially processed by the 

LSTM layers into a regression for sensor signal 

prediction. The sensors values at current time t are 

predicted and the result is compare with the query input 

at current time t to evaluate the residual. The residual is 

then analyzed to determine the sensors status. 

 

2.3 Network parameter optimization 

 

Since the deep LSTM is based on learning, the 

network parameters directly affect the deep LSTM 

performance in predicting the sensor values. Therefore, 

to obtain a high degree of signal estimation 

performance, the optimal parameters of the model are 

determined based on the following. (1) The network 

structure is first established through the determination 

of the number of LSTM layers and the number of 

LSTM neurons per layer, which are two important 

hyper parameters in the model, using grid search 

method. Instead of using the genetic algorithm [5] 

which is obviously complex and computational 

intensive considering complexity of the deep LSTM 

network, this paper used the grid search approach to 

determine the network hyper parameters in which the 

candidate number of LSTM layers and the LSTM 

neurons in each layer form a two-dimensional grid, and 

each node in the grid is verified to choose the optimal 

network structure. This approach does not only have 

low computational requirement but also simple and 

easy to implement. The hyper parameters with best 

performance on the validation dataset is then chosen as 

optimal and used for on-line signal validation. (2) 

Having determined the LSTM network structure, the 

minimization of the loss function, which is mean 

squared error (MSE), to determine the optimal weights 

of the model is performed by utilizing the Adam 

optimization algorithm, an adaptive moment estimation 

algorithm. Unlike traditional stochastic gradient descent 
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Fig. 3. Architecture of the proposed model for sensor signal validation 

 

(SGD) with fixed learning rate, the Adam optimizer 

determines adaptive learning rate for different 

parameters. (3) Finally, the dropout strategy is applied 

during the training to avoid over fitting. All the 

algorithms are implemented in R programming 

language and keras package, an R interface to keras. 

 

2.4 Applications 

 

In this section, the performance of the propose model 

for sensor signal validation is verified using real-time 

simulation dataset from a pressurized water reactor 

(PWR) nuclear power plant (NPP). The dataset is 

collected from the compact nuclear simulator (CNS) 

during heating from cool-down mode (start-up 

operation) and used as a normal start-up transient 

operation for training the model. Six sensors’ process 

parameters from the reactor coolant system (RCS) were 

selected for monitoring during this operation: S1 (cold 

leg temperature), S2 (core exit temperature), S3 (hot leg 

temperature), S4 (safety injection flow) S5 (residual 

heat removal flow) and S6 (sub-cooling margin 

temperature). The data consist of 1000 observations 

sequentially collected at constant time intervals of 1s. 

The data is first pre-processed by min-max 

normalization technique. The sliding window length r is 

then chosen to be 3 with window shifting step of 1, and 

based on this; the data is divided into training and 

validation dataset. A plot of errors in the prediction of 

training and validation sets is shown in Fig. 4. After 

training, the threshold for fault detection and diagnosis 

is determined from the residual of the prediction from 
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validation dataset. To verify the fault detection 

capability of the built deep LSTM model, we simulated 

abnormal conditions on the dataset by adding fault to a 

particular sensor data at a time. The faulty signal is 

sampled from a uniformly distributed signal within the 

interval [2, 8] (i.e., F~U[2, 8])  and added on S6 from 

t=51s to t=1000s. 

 

 
Fig. 4. A plot of error in training and validation datasets 

 

3. Conclusions 

 

In this paper, a deep learning model based on deep 

LSTM network is developed for signal validation and 

condition monitoring of sensors parameters in nuclear 

power plant. The developed architecture is based on the 

autoencoder, the encoder-decoder network, for signal 

reconstruction. The proposed network structure is 

validated using simulation dataset for start-up transients 

of a PWR NPP. The deep LSTM based autoencoder 

demonstrated its ability in signal validation of process 

parameters during transient operations. 

 

Acknowledgement 

 

This work was supported by the Korea Institute of 

Energy Technology Evaluation and Planning (KETEP) 

and the Ministry of Trade, Industry & Energy (MOTIE) 

of the Republic of Korea (No. 20163010140550); and 

by the National Research Foundation of Korea(NRF) 

grant funded by the Korean Government (MSIP: 

Ministry of Science, ICT and Future Planning) (No. 

2017M2B2B1072806). 

 

REFERENCES 

 
[1] I. Ahmed and G. Heo, Development of a Transient Signal 

Validation Technique via a Modified Kernel Regression 

Model, 10th International Embedded Topical Meeting on 

Nuclear Plant Instrumentation, Control, & Human-

Machine Interface Technologies NPIC&HMIT 2017, San 

Francisco, CA, USA, pp.1943-1951, June 11-15, 2017. 

[2] G. Heo, I. Ahmed, and G. Ha, “Apparatus and Method for 

Authenticating Time-Varying Signal in Online via Kernel 

Regression Model”, Korea Patent, 10-1967524, Korea, 

2019. 

[3] I. Ahmed, G. Heo, and E. Zio, On-line process monitoring 

during transient operations using weighted distance Auto 

Associative Bilateral Kernel Regression, ISA Transactions, 

In Press, 2019, https://doi.org/10.1016/j.isatra.2019.02.010. 

[4] S. Hochreiter, J. Schmidhuber, Long short-term memory, 

Neural Computing, Vol. 9, p. 1735-1780, 1997. 

[5] A. Almalaq and J. J. Zhang, Evolutionary deep learning-

based energy consumption prediction for buildings, IEEE 

Access, Vol. 7, p. 1520-1531, 2019. 


