A Study on the Establishment of Scenario Consider to Location and Treatment for Waste Tracking System

Sun Il kim, Ki Tae Yang, Jong Soon Song*
Chosun University, 309 Pilmun-daero, Dong-gu, G wangJu, Republic of Korea
<u>jssong@chosun.ac.kr</u>

1. Introduction

Domestic radioactive wastes are generated in nuclear power plants, Korea Atomic Energy Research Institute, KEPCO Nuclear Fuel Company, etc. These nuclear organizations have their own waste tracking system, but they need an integrated system to track wastes more efficiently.

2. Classification of Domestic Agency

2.1. Korea Atomic Energy Research Institute

Radioactive wastes, which KAERI classified as operational wastes, are generated from operation of Hanaro, production of radioisotopes, operation of the Irradiated Material Examinations Facility, the Post Irradiation Examination Facility and radioactive wastes treatment facilities and other laboratories. Depending on the radiation dose rate from surface of the wastes, in general, less than 0.2 R/hr is classified as low-level, less than 0.2~2 R/hr as intermediate level, and 2 R/hr or more as high-level radioactive waste, and depending on the contents, the wastes are classified into combustible, non-combustible, organic liquid waste, inorganic liquid wastes [1].

Table I: Korea Atomic Energy Research Institute Radioactive waste classification standards

waste classification standards				
Large Category	Middle Category	Туре		
Combustible	Vinyl	Vinyl Sheet, Vinyl Glove, Disposable Gowns		
	Cotton	Cotton Gloves, Cotton Mask, Cloth, Bandage,		
	Plastic	Acrylic, PVC Cask, PVC Bottle, PE Container		
	Timbers	Timbers		
	Paper	Paper, Decontamination Paper		
Non- Combustible	Concrete	Concrete, Cement		
	Glass	Glass Bottle, Glass Vial, Glass Fiber		

	Metal	Hoyle, Alloy, Aluminum	
		Charcoal Filter, Air	
	Filter	Purification Filter, Liquid	
		Purification Filter	
	Sludge	Sludge	
Organic	Organic	Alcohol, Acetone	
Waste	Waste		
Inorganic	Inorganic	Water in which various	
Waste	Waste	salts are dissolved	

2.2. KEPCO Nuclear Fuel Company

KEPCO Nuclear Fuel. KEPCO Nuclear Fuel produces the nuclear fuel used in nuclear power plants, and the nuclear fuel production process generates radioactive waste. Key radioactive waste includes the protective clothing, protective gloves and masks worn by workers for protection in the production processes in the radiation controlled area, and the metals generated in the equipment improvement process due to the deterioration of production equipment and facilities. [2].

Table II: KEPCO Nuclear Fuel Radioactive waste classification standards

classification standards				
Categorize	Туре			
Dry Active Waste	Glove, Mask, Decontamination Paper			
Composite	Plastic, Rubber, cable sheath			
Metallic materials	Pipe, Duct, Vessel			
Calcific Deposit	Calcific Deposit in the form of sludge during liquid waste			
Concrete	Sinter furnace, Concrete waste			
Timbers	Wood, Plywood, Equipment packaging			
Glass	Reagent bottle , fluorescent lamp, A variety of light bulbs			
Sodium fluoride	By-product waste generated after disposal of waste liquid			

2.3. Korea Hydro & Nuclear Power Company Co, Ltd. (Hanbit)

The Hanbit Nuclear Power Plant of KHNP is classifying wastes in consideration of the physical properties, density, amount, and substances restricted for disposal. The generated radioactive wastes are categorized into combustible and non-combustible, and then categorized into different types so that they can be treated in a way fit for disposal requirements.

Table III: Hanbit Nuclear Power Plant Radioactive waste classification standards

waste classification standards				
Large	Middle	Туре		
Categorize	Category	1,70		
Combustible	Cotton	Experiment Gown,		
	Cotton	Glove, Socks		
		Decontamination		
	Paper	Paper, Other Papers		
	vinyl	Tape, vinyl		
	Plastic	PVC, Bottle		
	Timbers	walk plate, paving, Wood		
	Other	Rubber, nylon, other		
	combustibles	combustibles		
		Metal plate, Pipe,		
Non-	Iron	Grating, Wire, Spray		
		Can, H-beam, S/S		
Non-	Aluminum	Aluminum, foil		
combustible	Activated carbon	HVAC internals		
	HVAC waste	HVAC Pre-filter,		
	filter	HEPA-filter		
	Other Non-	sludge, asbestos,		
	combustibility	plaster, glass		

3. A case of transportation for establishing a scenario and creating the scenario

Scenarios were established by analyzing the scenarios in which low- and intermediate-level radioactive wastes generated by the before development an integrated waste tracking system, Hanbit, and KAERI were moved to the Gyeongju disposal facility..

3.1. Hanbit Nuclear Power Plant Radioactive Waste WTS Scenario

Hanbit we analyzed the scenario of transporting the low and intermediate-level radioactive wastes, generated in the Nuclear Power Plant, to a disposal site, and established a scenario. The report is a report on the result of transporting low and intermediate-level waste in the 4th quarter of 2017. It deals with the case of the

waste, generated in the Hanbit Nuclear Power Plant, transported to a disposal site via Cheongjeong Nuri. [3].

According to the report, the route of movement of low and medium level radioactive waste from Hanbit Nuclear Power Plant is as follows. Radioactive wastes generated from Hanbit radioactive waste are moved to radioactive waste buildings (RWB), where waste is classified. From RWB, the secondary storage, the secondary storage, and Hanbit lighter wharf, and the Hanbit lighter wharf are transferred to WolseongLighter wharf via Cheongjeong Nuri. The final move was made from the Wolseong lighter wharf to Gyeongju disposal facility. [3][4].

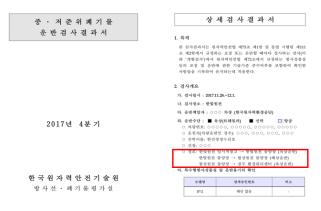


Fig 1. Low and intermediate-level waste transportation inspection result report (Hanbit)

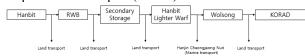


Fig 2. WTS scenario according to the report(Hanbit)

3.2. KAERI Radioactive Waste WTS Scenario

KAERI we analyzed the scenario of transporting the low and intermaediate-level radioactive wastes, generated in laboratory, to a disposal site, and established a scenario. The report is a report on the result of transporting low and intermediate-level waste in the 4th quarter of 2018.

KAERI has 1st radioactive waste storage facility, 2nd radioactive waste storage facility and Radioactive waste storage facility attached facilities. According to the report, the radioactive waste generated here is transferred to a disposal facility using a dedicated transport truck.

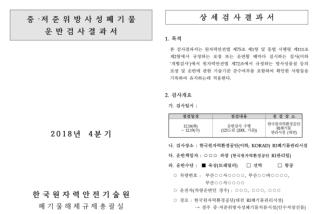


Fig 3. Low and intermediate-level waste transportation inspection result report (KAERI) $\,$

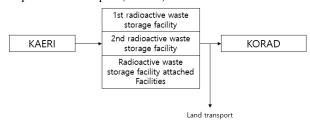


Fig 4. WTS scenario according to the report (KAERI)

4. Conclusions

This study applied the waste classification standards to the locational transportation path of the waste and created the low and intermediate-level waste transportation scenario for the Hanbit Nuclear Power Plant among nuclear power plants in Korea. If an integrated waste tracking system is developed in consideration of the location data and transportation path of agencies generating wastes, e.g. other NPPs, KAERI and KNFC, it will be possible to track wastes more efficiently.

Acknowledgements

This work was supported by Korea Institute of Energy Technology Evaluation and Planning (KETEP Project no.20171510300710) and Ministry of Trade, Industry and Energy, Republic of Korea.

REFERENCES

- [1]" Establishment Of Database System for the Management of KAERI Waste,", KAERI
- [2] "Establishment of an Integrated Information Management System for Safe Management of Radioactive Waste", KINS
- [3] "Low and Intermediate level Waste Transport Inspection Report", KINS, 2017
- [4] "Hanbit Nuclear Power Plant # 5 12th Periodic Inspection Report", KINS, 2019
- [5] "report on the result of transporting low and intermediatelevel waste in the 4th quarter of 2018", KINS, 2018