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1. Introduction 

 

Machine learning is a representative “data-driven” 

approach for analyzing phenomena or building inference 

models. In order to train a machine learning model, the 

quality of the data for the learning is prime important. 

When a machine learning model is trained with high-

quality data, the trained model can simulate the input 

data as well as extra-prediction capability. This 

characteristic of the machine learning is useful to predict 

the critical heat flux (CHF) for wide range of flow 

condition. 

The CHF for the narrow rectangular channel has been 

investigated by some previous researchers. And 

empirical correlations have been proposed to predict the 

CHF. However, applicable conditions of those are 

different each correlation. Therefore, it is necessary to 

apply machine learning technology for the prediction of 

CHF over a wide range of flow conditions. For this 

purpose, datasets corresponding to a wide range of flow 

conditions are required. The objectives of present study 

are to produce pseudo dataset to be used in the machine 

learning for the development of prediction model and 

correlation of CHF for narrow rectangular channel. 

 

2. Methods and results 

 

2.1. Study of CHF using machine learning 

 

The dataset for the machine learning should be 

sufficient to represent the whole thermal-hydraulic 

phenomenon. However, there is few available 

experimental CHF dataset in the open literature. Instead, 

there are many correlations that have been developed for 

each flow condition. These correlations or models can be 

applied to produce pseudo dataset for the wide range 

flow conditions to be used in machine learning. In the 

case of machine learning using such pseudo dataset, the 

model including the characteristics of each correlation 

can be trained. The model trained by following above 

method requires verification because only the pseudo 

datasets are utilized. Validation of the developed 

machine learning method is performed with 

experimental CHF data. If the experimental CHF data are 

well predicted by the machine learning model, the trained 

model can predict CHF for narrow rectangular channel 

over a wide range of thermal hydraulic condition. 

 

2.2. Establishment of pseudo dataset 

 

The pseudo dataset can be produced from existing CHF 

correlations applicable to narrow rectangular channel. 

Mirshak[1] , Kaminaga et al.[2] , Kureta & Akimoto[3] 

and Tanaka et al.[4] correlations are chosen in this study. 

The flow conditions of each correlation are summarized 

in Table 1. The number of pseudo data is 200K for each 

correlation and 800K for all pseudo data. 

 
Table I: Flow conditions of each correlation 

 Mirshak Kaminaga 
Kureta- 

Akimito 
Tanaka 

Mass flux 

(kg/m2s) 

-12000 

~ -4460 

-25800 ~ 

6250 

53 ~ 

19740 

0 ~ 

4000 

Pressure 

(kPa) 

168 ~ 

590 
100 ~ 400 101 101 

Inlet 

subcooling 

(K) 

28 ~ 

106 
0 ~ 78 10 ~ 70 20 ~ 80 

Gap size 

(mm) 

3.3 ~ 

6.6 

2.25, 

2.80, 5.00 

0.2, 0.5, 

1.0, 3.0 

1.0 ~ 

2.8 

Length 

(mm) 
489 375, 750 

50, 100, 

200 

10 ~ 

375 

 

2.3. Development of machine learning model 

 

The machine learning model for the CHF is composed 

of pre-training part consisting of deep belief networks 

(DBNs) [5] structure and prediction part consisting of 

convolution neural networks (CNNs) [6]. 
The DBN is a stacked structure of restricted 

Boltzmann machines (RBMs). RBM, which is one of the 

unsupervised learning networks, obtains the value of the 

hidden layer by applying weights between the input data 

and the hidden layer. And it is learned by the contrastive 

divergence method which repeats the process of 

predicting the input data again from the hidden layer. The 

training of the DBN is performed from a layer closest to 

the input layer until each RBM shows a sufficient 

performance. 
In this DBN learning method, since each hidden layer 

can predict the data of the previous layer, the weights 

between the layers are adjusted to distinguish and convey 

the information of the previous layer. The proposed 

model is expected to improve the learning performance 

of the model through pre-training with DBN. In addition, 

through the learning of the hidden layer which has more 

nodes than the number of nodes of the input layer, it is 

expected that the relevance of the factors constituting the 

input data will be transferred to the next layer. The output 

layer of the DBN composed of more nodes than the 

number of nodes of the input layer is necessary for the 
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CNN-based prediction part to perform a meaningful 

operation later. 

The CNN is a stacked structure of convolution 

operation. The CNN includes convolution, batch 

normalization [7], rectified linear unit (ReLU), and the 

last layer is a fully connected(FC) layer for prediction of 

CHF. Information about each layer of the learning model 

used in this study is listed in Table II. 
In Table II, the DBN layer means each RBM layer 

included in the DBN. In the proposed model, 3-layer 

DBN is used as pre-training part. The output of the each 

DBN layer is 1-D data. The output of the pre-training part 

is reshaped into square 2-D data of size 256×256 in front 

of the CNN structure. Each output of the convolution 

layer represents the number of kernels used for 

convolution operations. All convolution layers use 

ReLU as an activation function. Also, except for the first 

convolution layer, the convolution layer applies batch 

normalization before ReLU is applied. 
 

Table II: Structure of learning model 

Layer 
Kernel 

size 
Stride Padding Output 

DBN Layer1 - - - 8192 

DBN Layer2 - - - 4096 

DBN Layer3 - - - 4096 

Reshape - - - - 

CNN Layer1 3 2 same 32 

CNN Layer2 3 2 same 64 

CNN Layer3 3 2 same 128 

CNN Layer4 3 2 same 256 

CNN Layer5 4 1 valid 256 

FC - - - 1 

 

2.4. Prediction results 

 

To verify the trained model, we need to evaluate the 

CHF prediction results against pseudo dataset that is not 

used for training.  This dataset is called “test data”, and 

the amount of test data is 10% of pseudo data. Fig. 1 

shows the CHF prediction results for the test data.  The 

trained model predicts the test pseudo data within 4.26% 

of root-mean-squared (RMS) error and shows that the 

learning was successful. 
 

 
Fig. 1.  CHF prediction results of trained model for test data 

 

Even if the trained model is verified, the predictability of 

the trained model should be validated by predicting the 

other experimental CHF data that has never been used in 

the learning and verification. Fig. 2 shows the CHF 

predicting results of the trained model for experimental 

CHF data of which experimental conditions is listed in 

Table III.  From the prediction, the trained model predicts 

the experimental CHF data within 15.28% of RMS error.  

It indicates that the trained model simulates successfully 

the CHF in narrow rectangular channel. 

 

 
Fig. 2.  CHF prediction results of trained model for 

experimental data 

 
Table III: Flow conditions of experimental data 

Parameter Value 

Mass flux (kg/m2s) -5700 ~ 9000 

Pressure (kPa) 120 ~ 320 

Inlet subcooling (K) 0 ~ 78 

Gap size (mm) 2.35, 2.58 

Length (mm) 182, 640 

 

3. Conclusions 

 

In the present study, the machine learning model was 

developed to predict CHF in narrow rectangular channel.  

The machine learning model consists of DBNs for pre-

training and CNNs for prediction.  The dataset used for 

learning is the pseudo dataset generated from Mirshak, 

Kaminaga et al., Kureta-Akimoto and Tanaka et al. 

correlations. The trained model predicts the test pseudo 

data within 4.26% of root-mean-squared (RMS) error.  

Finally, the trained machine learning model predicts 

experimental CHF data within 15.28% of RMS error. It 

shows that the proposed machine learning model is 

suitable for the prediction of CHF for narrow rectangular 

channel. 
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