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1. Introduction 

 
For the design of reactor core, lots of design 

parameters are considered; diameter of fuel pin, pin cell 

pitch, uranium enrichment, fuel composition, assembly 

configuration including burnable poison rod, core 

loading pattern, and others. The calculations for 

estimating the reactor characteristics are numerously 

conducted to find the optimized parameters with 

considering reactor physics, thermodynamics, material 

integrity and the others. It is the one of the reasons why 

optimization procedure requires large computational 

time. Up to now, the reactor design and optimization 

have been conducted by two-step method. In reactor 

design with two-step method, the assembly group 

constant should be generated by assembly calculation 

whenever assembly design is changed. With the 

limitations of present code systems, it is extremely 

difficult to innovatively improve the computational 

efficiency. As a feasibility research step, in this study, the 

criticality calculation performance using deep learning 

technique is verified for single fuel pin. In this study, 

eight parameters were selected as input parameter and 

the neural network was composed of five fully connected 

layers with eight neurons. 

 

2. Method  

 
2.1 Dataset for training neural network 

 

For verifying the criticality calculation performance 

with the artificial neural network, a basic model was 

selected as shown in Fig. 1. Eight parameters to mainly 

affect the criticality were selected; radius of fuel pin, air 

gap thickness, thickness of cladding, pin cell pitch, 

enrichment of fuel pin, density of uranium oxide, coolant 

density and boron concentration.  

For conducting the machine learning, each parameter 

was chosen randomly within certain ranges of each 

parameter for applying to the commercial nuclear power 

plant. The scope of each parameter are also given in 

Table I.  According to change of parameter, criticality 

calculation was performed by MCNP6 with ENDF/B-

VII.1. Criticality that has within 0.001 standard 

derivation was classified as data set. Therefore, 9176 

training data set of and 1100 validation data set were 

generated in this study to training the neural network.  

 

 

Fig. 1. Radial view of the single fuel pin 

 

Table I: Scope of the parameter  

Parameter Scope Unit 

Radius of fuel pin 0.3796 – 0.4396 cm 

Thickness of air gap 0.0062 – 0.0102 cm 

Thickness of cladding 0.0472 – 0.0672 cm 

Pin cell pitch 1.1 – 1.5 cm 

235U Enrichment 0.711 – 4.95 w/o 

Density of UO2 10.300 – 10.960 g/cm3 

Density of coolant 0.5 – 1.0 g/cm3 

Boron concentration 10 – 1000 ppm 

 
2.2 Construction of neural network 

 

The basic structure of the neural network used for 

predicting criticality of fuel pin is shown in Fig. 2. Eight 

parameters are entered in input layer. The parameters 

have different scale as shown in Table I, and these 

different scale cause inefficiency for conducting the 

machine learning. Therefore, preprocessed parameters 

through standardization are used in the machine learning. 

The neural network consists of five fully connected (FC) 

layers. Deep neural network and large number of 

parameters can increase the possibility of overfitting. In 

order to prevent the overfitting problem, five hidden 

layers are only used for criticality estimation, and the 

number of neurons in each layer is fixed to eight. 

Hyperbolic tangent is used as activation function to make 
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the input distribution in current layer similar with the 

input distribution in previous layer. Output of each layer 

become between -1 and 1 through hyperbolic tangent. 

Therefore, each layer can have the similar input 

distribution. Learning rate exponentially is decayed with 

0.001 initial learning rate and 0.9 decay rate. 

 

 

 

Fig. 2. Structure of the neural network for criticality 

estimation 

 

3. Results  

 
Fig. 3 shows the training loss and validation loss 

estimated with the neural network. Mean Square Error 

(MSE) was used for loss function which means an 

indicator to measure learning status of neural network. 

As processing the machine learning, the training loss 

decreases consistently, while validation loss decreases 

and increases after certain point. This is caused by the 

overfitting that neural network remembers the training 

data set. To reduce the overfitting problem, weight and 

bias in neural network was saved whenever validation 

loss become minimum, and stored parameters were used 

for inference. 

Fig. 4 shows the criticality difference estimated by the 

MCNP6 code and the neural network with the training 

dataset and validation dataset. In the initial step on the 

training, the criticality difference was 21407.54 pcm, 

while criticality difference was reduced as training 

progresses, and minimum value of the average criticality 

difference reached to 64 pcm.  

 

 

 

Fig. 3. Train and validation losses during machine 

learning 

 

Fig. 4. Average criticality difference between MCNP6 

and neural network 

For the additional verification, criticality calculations 

were performed for the inference dataset. The 

distribution of the criticality differences estimated by the 

MCNP6 code and the neural network are shown in Fig. 

5, and results are summarized in Table II. Criticality 

differences were mostly under 100 pcm. However, the 

analysis showed that additional training dataset should 

be required for increasing the accuracy of the neural 

network. 

Fig. 5.  Histogram of criticality difference 

 



Transactions of the Korean Nuclear Society Autumn Meeting  
Goyang, Korea, October 24-25, 2019 

 

 

Table II: Summary of results  

The number of Inference data set 1100 

Loss 2.3397E-05 

Average critical difference 62.73 pcm 

 
4. Conclusions 

 

In this study, criticality calculation performance of the 

neural network was validated for a pin cell problem. 

After generating dataset of the pin cell problem, the 

machine learning of the neural network was conducted 

and the accuracy of the neural network was evaluated. 

The average difference of the criticality between the 

results with the neural network and the MCNP code was 

62.73 pcm, and criticality differences over 80 % samples 

agree well within 100 pcm. Based on the results, it is 

confirmed that neural network can accurately and 

efficiently predict the criticality of fuel pin problem. As 

a future work, a neural network will be developed for 

estimating criticality, surface flux and peaking factor of 

fuel assembly and core combining the pin cell neural 

network. 

 

ACKNOWLEDGEMENTS 

 

This work was supported by a National Research 

Foundation of Korea (NRF) grant funded by the Ministry 

of Science and ICT of Korea (MSIT) (NRF-

2018M2C7A1A02071506). 

 

REFERENCES 

 
[1] G. Montavon, W. Samek and K. Muller, “Methods for 

interpreting and understanding deep neural networks”, Digital 

Signal Processing, 73, p. 1, 2018 

[2] G. Hinton, et al., “Dropout: A Simple Way to Prevent 

Neural Networks from Overfitting”, Journal of Machine 

Learning Research, 15, p.1929-1958, 2014 

[3] D. Specht, et al., “A General Regression Neural Network, 

IEEE TRANSACTIONS ON NEURAL NETWORKS”, Vol 2, 

p.568, 1991 

[4] C.J. Werner et al. MCNP USER’S MANUAL Code, Los 

Alamos National Laboratory, LA-UR-17-29981, 2017 


