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1. Introduction 

 
The RCCA(Rod Cluster Control Assembly) 

withdrawal event is defined as a transient condition in 

which an uncontrolled reactivity is added to the reactor 

core by RCCA withdrawal, which can result in a burst 

of power. This condition may be caused by failure of 

the reactor control system or failure of the control rod 

system. RCCA withdrawals are classified as 

RWFS(RCCA Withdrawal from Sub-critical) and 

RWAP(RCCA Withdrawal at Power). This study was 

analyzed using point kinetics and 3D kinetics for RWFS 

of WH 3-Loop nuclear power plant. 

 

2. Methods and Results 

 

In order to simulate this case, a PC version of 

RETRAN-3D developed by the US EPRI was used as 

the system code for system analysis[1,2]. 

 

2.1 Analysis Conditions 

 

RWFS refers to the withdrawal of the RCCA from the 

non-critical or low power, usually for analysis when the 

Operation Mode 2 at the start or stop of the operation. 

Therefore, the initial conditions required for analysis are 

the same as those in Operation Mode 2. RWFS is 

classified as ANS Condition-Ⅱ, and the safety 

assessment criteria in the analysis of event are minimum 

DNBR for ensuring integrity of the cladding, and RCS 

pressure for ensuring system integrity. In addition, 

normal operation shall be possible after the accident and 

shall not lead to ANS Condition-Ⅲ accident. However, 

RWFS is usually classified as an accident with a main 

concern of DNBR. 

 

2.2 RETRAN Modeling 

 

The input used in this calculation was made during 

the development of a safety analysis methodology for 

Westinghouse type nuclear power plants[3].  

In order to simulate WH 3-Loop, the main system in 

the Nuclear Steam Supply System of the power plant 

was modeled with about 60 control volumes and about 

100 junctions used to connect them or express boundary 

conditions. A trip card and a control card were used to 

control the setpoint and response time. WH 3-Loop 

nodalization for RETRAN code and 3D modeling are 

shown in Fig. 1, 2, 3. 

The RCP was modeled for each loop by reflecting the 

pump characteristic curve, and each start/stop was 

performed by a trip card. The Steam Generators were 

also modeled for each loop, and U-tube serving as 

primary and secondary heat transfer were divided into 4 

vertical heat conductors. And the secondary system was 

divided into 5 volumes for accurate simulation of 

behavior under steady and transient conditions. The 

decay heat considered the error of 2σ in ANS-79. 

In this simulation, since the power of the analysis is 

low power of 20% or less, an error occurs in setting the 

steady-state when the steam generator is modeled with 

multiple nodes. Therefore, the steam generator 

secondary side was modeled as a single volume. 

 

 

Fig. 1. WH 3-Loop nodalization for RETRAN code 
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Fig. 2. RETRAN model for integrated code 

 

 
Fig. 3. Core mapping model 
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2.3 Analysis Results 

 

Fig. 4 shows the power. The reactivity is added upon 

withdrawal of the control rod assembly, so the power 

rises rapidly to reach 35% power at 6.1 seconds, 

resulting in a trip signal of the reactor. After the reactor 

trip, the power and pressure continue to rise, increasing 

to 127.8% rated power, and then decreasing. 

Fig. 5 shows the DNBR. For DNBR, the calculation 

model of the RETRAN-3D DNBR[4] was used, but the 

analysis was made by considering the core hot channel 

minimum flow rate of 0.63 lbm/sec, the radial peak 

factor of 2.14, and the axial peak factor of 3.1. Using 

the W-3 DNBR correlation, this analysis has calculated 

that the minimum DNBR is 1.354. 

Fig 6, 7 show the power and DNBR using the 3D 

kinetics. The power rises at about 40 seconds and rises 

to 35.63% rated power at about 55 seconds. The 

Minimum DNBR is 3.2. 
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Fig. 4. Power trend (Point Kinetics) 
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Fig. 5. DNBR trend (Point Kinetics) 

 

 

Fig. 6. Power trend (3D Kinetics) 
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Fig. 7. DNBR trend (3D Kinetics) 

 

3. Conclusions 

 

The RCCA Withdrawal from Sub-critical in WH 3-

Loop was analyzed using the point kinetics and 3D 

kinetics. As a result of the analysis, when 3D kinetics 

was used, it was possible to verify that the power was 

reduced to a level of 1/4 and the DNBR margin was 

increased. For more accurate analysis, a 3D kinetics 

analysis code using the SPACE+RAST-K is currently 

being developed. 
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