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1. Introduction 

 
A nodal method based on the Analytic Function 

Expansion Nodal (AFEN) method [1-5] in the hexagonal 
geometry has been implemented into CAPP [6] in order 
to improve the computational efficiency of its high order 
Finite Element Method (FEM). The AFEN version 
applied here is the refined AFEN method introduced in 
Reference [4]. 

As is generally known, numerical schemes based on 
the response matrix method are considered more 
numerically efficient than the original refined AFEN 
method. The response matrix method uses the interface 
partial currents as nodal unknowns instead of the 
interface fluxes used in the original refined AFEN 
method. There is an advantage in the response matrix 
method that the domain where the nodal unknowns and 
their coefficients matrixes are calculated is confined 
within the node independently of its neighbor nodes. 
This property is very favorable for parallel computation 
combined with the RGB sweeping scheme described in 
Reference [7]. 

In addition, the response matrix method has another 
advantage. It calculates the six outgoing interface partial 
currents of each node at once by solving a single-node 
problem with the boundary conditions of six incoming 
partial currents. On the other hand, the original refined 
AFEN method determines only one interface flux by 
solving a two-node problem with current continuity 
condition across each interface between two nodes. 
Considering that the number of nodes is three times less 
than the number of interfaces ideally, the response matrix 
method becomes at least three times more efficient than 
the original refined AFEN method theoretically if we 
assume that the number of iterations required to achieve 
a certain accuracy level is same for both methods. 

Noting that the Finite Difference Method (FDM) 
nonlinear iteration scheme [8] is widely being used as an 
acceleration scheme for high-order neutron diffusion and 
transport methods, the nonlinear FDM response matrix 
method equivalent to the refined AFEN method was tried 
to reduce computational time.[7] However, unlike the 
hopeful expectation caused by a big success of the 
nonlinear FDM as an acceleration technique, the refined 
AFEN method equivalent FDM response matrix method 
could not provide a numerically stable solution.[7]  

To assure numerical stability, we adopt finally a direct 
formulation of the response matrix of the refined AFEN 
with interface partial currents and their moments.[9] This 
method was tested against a benchmark problem in 
Reference [9]. The results showed that its computing speed 
is faster than that of the original refined AFEN method. 

In order to generalize the conclusion of Reference [9], 
a numerical method to analyze the numerical 

performance of the refined AFEN response matrix 
method is presented in this paper. The numerical error 
analyses using this method are performed for several 
benchmark problems including the VVER-440 LWR 
benchmark problem and the MHTGR-350 HTGR 
benchmark problem to show the numerical performance 
of the refined AFEN response matrix method. 

 

2. Methodology 
 

The readership of this paper is kindly recommended to 

refer Reference [9] for the refined AFEN response matrix 

method in the two-dimensional hexagonal geometry. 

Only a numerical method for its numerical performance 

analysis is describe here. 

The performance of an iterative numerical scheme to 

solve a linear elliptic partial differential equation is 

shown by a numerical error analysis in a general textbook 

on numerical methods.[10] The iterative method applied 

to solve the AFEN response matrix in the hexagonal 

geometry by the power method is given by 

 𝐬(𝒕+𝟏) =
𝟏

𝒌(𝒕)
𝐀 𝐬(𝒕) (1) 

 𝒌(𝒕+𝟏) =
‖𝑨 𝐬(𝒕)‖

⟦𝐬(𝒕)⟧
= 𝒌(𝒕) ‖ 𝐬(𝒕+𝟏)‖

⟦𝐬(𝒕)⟧
 (2) 

 
where 𝐬(0) = 𝐬0,  𝑘(0) = 𝑘0, and 𝑡 = 0,1, … 𝐬 is an 1 × n 

iteration vector and 𝐀  is the n × n  corresponding 

iteration matrix. The nodal neutron source vector can be 

the iteration vector in this discussion and the sum of 

absolute values of the elements of the source vector can 

serve as the norm for the iteration vector in Eq. (2).  

Assume that 𝐀  is a complete matrix and that it has a 

single dominant eigenvalue and a second dominant 

eigenvalue. Le λ1, … , λ𝑛 (|λ1| > |λ2| > |λ𝑗| for all 𝑗)  denote 

the eigenvalues of 𝐀  and 𝐮1, … , 𝐮𝑛  the corresponding 

eigenvectors, which form a complete basis set. 

By defining the error vector as follows and writing it 

in terms of these basis vectors, we can derive the 

expression for the dominance ratio, |𝜆2/𝜆1| by which the 

rate of convergence of the iteration system is governed: 

 

𝐞(𝒕) = 𝐬(𝒕) − 𝐬∞                                      

               
= 𝑻(𝒕) (𝒄𝟐 (

𝝀𝟐

𝝀𝟏
)

𝒕

𝐮𝟐 ⋅⋅⋅ +𝒄𝒏 (
𝝀𝒏

𝝀𝟏
)

𝒕

𝐮𝒏)

≈ 𝑻(𝒕)𝒄𝟐 (
𝝀𝟐

𝝀𝟏
)

𝒕

𝐮𝟐        𝒇𝒐𝒓 𝒂𝒍𝒍 𝒕 ≫ 𝟎

 (3) 

where 𝐬∞  is the converged source vector and is 

approximated by iteration until 𝐬(𝑡)  converges within 

almost the truncation error level. Once we get 𝐬∞, we 

repeat the iteration from the beginning to compute the 

dominance ratio by using the following equation: 

 
‖ 𝐞(𝒕)‖

‖𝐞(𝒕−𝟏)‖
≈

𝝀𝟐

𝝀𝟏
  𝒇𝒐𝒓 𝒂𝒍𝒍 𝒕 ≫ 𝟎 (4) 
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3. Numerical Results and Discussion 

 

The numerical performance of the refined AFEN 

response matrix method was verified against several 

benchmark problems including small and large light 

water reactor (LWR) and high temperature gas-cooled 

reactor (HTGR) cores. The verification here focuses 

primarily on showing computational efficiency rather 

than accuracy. The excellent accuracy of the refined 

AFEN method has already shown in Reference [4].  
 

3.1. Mini Core Problem  
 

A mini core problem having seven fuel assemblies in 

the first and second rings of the hexagonal core and 

twelve non-power generating control assemblies in the 

third ring was derived from VVER-440 problem. [4,11] 

The numerical error analysis was performed with two 

energy groups in a sixth core and the results of the refined 

AFEN response matrix method were compared with 

those of the original refined AFEN method and the FDM 

response matrix method without any nonlinear correction 

factors. Fig. 1 shows a pattern in which the fission source 

vector converges as the iteration progresses. Each of the 

three solid lines in this figure is the logarithmic scale 

normalized norm of the error vector of the source vector 

given in Eq. (3) (See the left-y axis.) and each of dotted 

lines is the dominance ratio estimated by the equation (4) 

(See the right-y axis). Red, green and blue colors on both 

solid and dotted lines indicate the quantity for the refined 

AFEN response matrix, the original refined AFEN 

method and the FDM response matrix, respectively. 

This figure clearly illustrates the excellence of the 

refined AFEN response matrix method in numerical 

performance beyond comparison with the other two 

methods. This method with a much lower dominance 

ratio converges more than twice as fast as the other two 

methods. This method reaches asymptotic convergence 

state after only a few initial iterations, which is 

characterized by a flat dominance ratio and a linearly 

decreasing error in logarithmic scale. In this state, the 

error is reduced by the power of the dominance ratio as 

each iteration progresses. Therefore, an acceleration by 

extrapolation of the iterative vector becomes possible. 
 

 

Fig. 1 Convergence Pattern (Mini Core)  
 

Some numerical performance related parameters 

calculated by the three methods are compared in Table I. 

The k-effective difference between the two refined 

AFEN methods is purely due to the different boundary 

conditions because the two methods are mathematically 

equivalent. Therefore, this difference does not mean that 

one is better in accuracy than the other. The boundary 

condition applied is the zero incoming partial current for 

the two response matrix methods and the zero flux for 

the conventional form of the refined AFEN method. The 

numerical performance of a method is not significantly 

affected by the difference between these two boundary 

conditions. (See the footnote below Table II.) 

The second column of the table is the dominance ratio 

estimated numerically, where the value for the refined 

AFEN response method is the smallest. The third column 

is the number of iterations expected to achieve a less than 

10-7 accuracy in node-wise sources if the source error 

decreases in an asymptotic manner as described above. 

This is the value calculated by the following equation:  

 −
𝟕

𝐥𝐨𝐠𝟏𝟎(
𝝀𝟐
𝝀𝟏

)
 (5) 

 
The next column is the number of iterations performed 

to achieve the same accuracy in the actual calculation. 

Not only does the refined AFEN response matrix method 

have the smallest number of iterations, but it also has the 

smallest deviation between the prediction and the actual 

value. This means it reaches the asymptotic state very 

early, which is advantageous for acceleration by 

asymptotic extrapolation. The last column is time 

consumed for the calculation. This value is obtained by 

averaging three measurements from a PC with Intel®  

Core™ i7-4930K CPU using the functions of the MS 

Visual Studio™ Chrono library. The refined AFEN 

response matrix method is 2.5 times faster than the 

original refined AFEN method. It is a little faster 

considering the number of iterations, but slower 

considering the efficiency of the response matrix 

aforementioned in Introduction. This is probably due to 

the fact that the size of the core and the number of energy 

groups are so small that the proportion of auxiliary 

operations other than the iteration matrix related 

operations becomes not small within a single iteration. 
 

Table I. Numerical Performance Parameters (Mini Core) 

 k-eff  Expected 
Iterations 

Actual 
Iterations 

Time 
(sec) 

AFEN RM 0.778735 0.45164 20 20 389 

AFEN 0.776642 0.69846 45 41 944 

FDM RM 0.865688 0.81307 78 51 293 

 

3.2. VVER-440 Problem 

 

The refined AFEN response matrix method were 

further verified against the VVER440 benchmark 

problem [4,11] , which is a commercial size LWR core 

simulating an old Soviets PWR. It consists of 342 fuel 

assemblies, 7 non-power generating control rod 

assemblies, and 72 surrounding reflector assemblies. 

The results of the numerical error analysis are shown 

in Fig. 2 and Table II. All the components of the figure 

and the table have a completely same meaning as 
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described in the previous section. Note that there exists 

the same boundary condition difference among the three 

methods as described in the section. 

The error vector of the refined AFEN response matrix 

method is smaller than that of the FDM response matrix 

method at the early stage of iteration. But eventually it 

gets caught up with the FDM response matrix method 

near the 1,000th iteration (near 10-11 error). This is 

because the refined AFEN response matrix method has a 

very comparable but slightly larger dominance ratio 

compared with the FDM response matrix method. 

The deviation between the predicted and the actual 

number of interactions widens as the problem size 

increases. Therefore, attention is required to accelerate 

calculation with asymptotic extrapolation. An adequate 

under-relaxation factor in extrapolation may be desirable. 

Comparing the refined AFEN response matrix method 

and the original refined AFEN method is more exciting. 

Although the refined AFEN response matrix method has 

a much smaller dominance ratio (The criterion is how far 

from one.), it seems to be inferior to the original refined 

AFEN method in terms of the error size at the early stage 

of iteration. However, eventually, it requires three times 

shorter computing time to achieve 10-7 accuracy. 

Considering that it does not seem to be overwhelmingly 

faster (3.4 times faster) than the number of iterations has 

reduced (3.2 times), the proportion of auxiliary 

operations is still too significant to show the advantage 

of the calculational efficiency of the response matrix.  

 

 

Fig. 2 Convergence Pattern (VVER-440) 
 

Table II.  Numerical Performance Parameters (VVER-440) 

 k-eff  Expected 
Iterations 

Actual 
Iterations 

Time 
(msec) 

AFEN RM 1.009645 0.97672 684 460 64 

AFEN* 1.008632 0.99358 2501 1454 216 

FDM RM 1.018224 0.97583 659 463 31 

* The original AFEN method with the vacuum boundary condition 
computed the effective multiplication factor equal to the value of the 

AFEN RM method after 1483 iterations. 

 

3.3. MHTGR-350 Problem 

 

The MHTGR-350 problem[12] is a 350MWth hexagonal 

prismatic block type HTGR core with graphite 

moderator and helium coolant. It has an active core of 66 

fuel blocks in the fourth, fifth and sixth rings of the core, 

surrounded by graphite reflectors with about three rings 

thick inward and outward. Due to spectrum shift in the 

graphite-moderated reactor, the ten-energy group system 

rather than the two- group system is used for the analysis 

of the MHTGR-350 core. 

Fig. 3 and Table III illustrate the results of the 

numerical error analysis. The results of the error analysis 

show that the convergence patterns for the VVER-440 

problem, such as the order of the three methods in 

convergence speed driven by the dominance ratio size, 

remain the same for this problem. The error of the 

original refined AFEN method is the smallest in the early 

iteration stage but eventually caught by the refined 

AFEN response matrix method. However, the big 

difference from the results of the error analysis of 

VVER-440 is also shown: The dominance ratio deviation 

between the two AFEN methods has greatly narrowed, 

which in turn leads to a big reduction in the difference in 

the number of iterations (from 3.2 times for VVER-440 

to 1.2 times for MHTGR-350). 

This should have meant less reduction in computing 

time but, there is another reversal, so the reduction is 

almost the same as for the VVER-440 problem (3.4 times 

faster). This is because the proportion of the iterative 

matrix related operations increases significantly 

compared to that of the auxiliary operations as the 

number of energy groups increases from two to ten. The 

calculational efficiency of the refined AFEN response 

matrix method, which is at least three times higher per 

iteration, becomes easier to be realized for this problem. 

The results showed again that a careful asymptotic 

acceleration is required with under-relaxation factors. 

 

 

Fig. 3  Convergence Pattern (MHTGR-350) 
 

Table III.  Numerical Performance Parameters (MHTGR-350) 

 k-eff  Expected 
Iterations 

Actual 
Iterations 

Time 
(msec) 

AFEN RM 1.093230 0.97531 645 450 290 

AFEN 1.092759 0.97936 773 545 971 

FDM RM 1.050210 0.97248 578 413 55 

 

4. Conclusions 

 

In order to improve efficiency of the CAPP code in the 

analysis of the hexagonal reactor cores, we have tried to 

implement a refined AFEN method in the hexagonal 

geometry whose accuracy has been well proven. The 
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numerical method for the refined AFEN method adopted 

here is the response matrix method that uses the interface 

partial currents as nodal unknowns instead of the 

interface fluxes. This method has an advantage that all 

iterative matrix calculations are single-node based, 

which is not only very efficient but also very favorable 

for parallel computation. 

After we found that the refined AFEN method 

equivalent nonlinear FDM response matrix method could 

not provide a numerically stable solution, we developed 

the direct formulation of the refined AFEN response 

matrix to assure numerical stability. 

To show the numerical performance of the refined 

AFEN response matrix method against the original 

AFEN method, the numerical error analyses were 

performed for several benchmark problems including the 

two-group VVER-440 problem representing the LWR 

core and the ten-group MHTGR-350 problem 

representing the HTGR core. Although the difference 

varies depending on the problem, the refined AFEN 

response matrix method consistently shows a smaller 

dominance ratio for the benchmark problems. It also 

shows a more than three times speedup in computing 

time for both problems. The reason of the speedup is 

explained differently for each of them: that for the 

VVER-440 problem is mainly due to a big cut in the 

number of iterations caused by a far smaller dominance 

ratio, on the other hand, that for MHTGR-350 problem 

is mainly due to the advantage of the computational 

efficiency of the response matrix method. 

In addition, it was found from the results of the error 

analyses that the dominance ratio of this method is 

smaller than or at least comparable to that of the FDM 

response matrix. This can be presented as a cause of poor 

performance of the nonlinear FDM schemes in 

accelerating the refined AFEN response matrix method. 

In short, it can be concluded that the refined AFEN 

response method significantly outperforms the conventional 

AFEN method in analyzing the hexagonal reactor cores. 
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