
Transactions of the Korean Nuclear Society Autumn Meeting

Goyang, Korea, October 24-25, 2019

Initial Development of PRAGMA – A GPU-Based Continuous Energy

Monte Carlo Code for Practical Applications

Namjae Choi, Kyung Min Kim, Han Gyu Joo*

Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
*Corresponding author: joohan@snu.ac.kr

1. Introduction

The Monte Carlo (MC) method in computational

reactor physics provides the significant advantage of

simulating neutrons in continuous phase space involving

energy, angle and space. It can also use the raw nuclear

reaction data directly. However, due to its probabilistic

nature, a significant amount of stochastic samples are

required to produce statistically reliable results. The

excessive computational burden associated with using

large samples prevents the use of the MC method in

practical reactor design analyses.

The most straightforward approach to alleviate the

excessive computing time of the MC method is massive

parallelization exploiting the inherent characteristic of

mutual independence in particle simulation. The Shift

code [1] of the Oak Ridge National Laboratory (ORNL)

and the OpenMC code [2] of MIT had demonstrated

excellent scaling efficiency with more than 100,000

CPU cores and thus proved the time-wise practical

applicability of the MC method on the leadership-class

supercomputers.

However, relying on supercomputers is not practical

in real sense since such systems are not affordable in

most institutions. There can be, however, an alternative

of achieving high computing performance using GPUs

(Graphics Processing Units) which have become more

popular with the rise of artificial intelligence (AI). A

pioneering MC neutron transport code, WARP [3]

developed at U.C. Berkeley succeeded in showing the

potential of continuous energy MC calculation on GPUs.

Motivated by the pioneering research, we recently

initiated the development of a GPU-based continuous

energy Monte Carlo code PRAGMA (Power Reactor

Analysis using GPU-based Monte-Carlo Algorithm) for

‘pragmatic’ applications. Our experiences in the GPU

acceleration of nTRACER [4] became the basis of the

development. This paper introduces the challenges in

offloading the MC method onto a GPU-based platform.

The algorithms and features of PRAGMA, and some

preliminary results are presented.

2. Backgrounds and Algorithms

2.1 Characteristics of GPUs and Challenges

GPU is a vector processor and executes instructions

in the SIMD (Single Instruction Multiple Data) fashion.

A single GPU card contains thousands of cores but they

are only partially independent. A core can execute only

the instructions independently; fetch or decode is done

totally for a group of cores. Therefore, a single dispatch

unit controls several cores simultaneously, which means

that the cores that belong to same dispatch unit always

receive the same instruction, but operate on different

data.

Figure 1. Schematic diagram of SIMD processing.

In CUDA, 32 work items are grouped as a warp and

processed together. When there are not enough work

items that can be processed in SIMD, the remaining

threads in a warp are filled with dummy instructions. It

is called thread divergence and it decreases efficiency.

GPUs typically have large memory bus to provide

high memory bandwidth. The memory bus width which

is the amount of data transferred at each memory access

ranges from 256 to 1024-bit for modern GPUs. As an

example, if only a single 32-bit variable is used at each

memory access with a 256-bit bus, the achieved memory

throughput is only 12.5%. Thus, in order to maximize

the memory throughput, adjacent threads should read

memory contiguously so that multiple access requests

can be handled by a single transaction through the bus.

This is called memory coalescing.

It should be noted that accessing the main memory is

often a bottleneck and each main memory access can

waste several hundred compute clock cycles. Although

the main memory of GPUs is much faster than that of

CPUs, the relative operating speed is slower because

GPUs have significantly higher FLOPS. Thus, GPUs

contain a large pool of registers, which are fast buffer

memories used to save thread-private local variables.

Even though the registers are full, the variables are

spilled to L1 caches which are still fast. Therefore, pre-

fetching reused data into local variables is crucial to

minimize the memory bottleneck.

As the result, GPUs are poor at branching instructions

and random memory accesses due to the SIMD and the

Transactions of the Korean Nuclear Society Autumn Meeting

Goyang, Korea, October 24-25, 2019

coalescing requirement. However, these (branching and

random access) are exactly what the MC simulation

requires. Such difficulties led to the introduction of a

fundamentally different algorithm referred to as event-

based tracking, in contrast to conventional history-

based tracking in the MC particle simulation.

2.2 Tracking Algorithm: History-based vs Event-based

The history-based tracking algorithm traces neutrons

from their birth to death one by one. It is the most

straightforward algorithm, but it has been considered

inappropriate for vector processors like GPUs due to the

conditional branches. Every neutron undergoes its own

sequence of ‘events’ which is different from others and

the choice of an event is randomly determined through

conditional branches.

Conversely, in the event-based tracking algorithm

which was first introduced in 1980s [5] when vector

processing first became popular in the contemporary

supercomputing arena, the neutron events are processed

one at a time, and a collection of neutrons that are about

to undergo the event are tracked together. By processing

the event with a SIMD instruction for those neutrons,

the vectorization capability of GPUs can be exploited.

The efficiency of the event-based tracking algorithm is

determined by how well the events are defined and how

efficiently sorting is done.

In PRAGMA, a hybrid approach mainly based on the

history-based algorithm is introduced. This approach is

based on our observations that the most critical process

is the cross section reconstruction part, in which random

memory accesses are dominant over branches. The

event-based algorithm is for reducing branches not the

random accesses, so the efficiency of the event-based

algorithm is limited. The process where the algorithmic

branch is dominant is the post-collision process where

fission neutrons are created, reactions are determined,

and outgoing energy-angle pairs are sampled. However,

the time portion of the post-collision process appeared

to be less than ~15%, whose improvement by sorting

might be marginal and even outweighed by the sorting

cost itself.

In addition, even though the history-based algorithm

suffers from event branches, it has a benefit that local

memories can be exploited. In the GPU implementation

of the history-based algorithm, the entire simulation

loop is wrapped into a one large kernel so that the data

shared throughout the loop such as the neutron weight,

energy, local cross sections, or other indices can be

saved in local variables. However, in the event-based

algorithm where the event kernels are split, those data

should be saved to and read from main memory every

time, since local variables cannot exist across kernels.

As the result, the tracking algorithm in PRAGMA is

the history-based algorithm with minimal sorting on the

status of neutron life and death. As simulation proceeds,

neutrons die out and neutron array becomes ‘porous.’

Such state of active and inactive neutrons being mixed

up over the threads causes thread divergences. Hence, at

every kernel call, the neutrons are simulated only by a

fixed number of iterations and sorted by the life and

death status. Then, subsequent kernel begins with only

alive neutrons, and finally, the outer loop continues until

all the neutrons are dead. The following pseudocode

illustrates the hybrid tracking algorithm.

while (num_alive > 0)

Launch GPU kernel with num_alive threads

parallel foreach num_alive neutrons

for i = 1 : max_iteration (= 10)

if (!alive) break

Calculate macroscopic cross section

Calculate DTS and DTC

Move neutron to next position

if (DTS < DTC) continue

else

Sample target nuclide

Generate fission neutrons

Sample collision reaction

Sample outgoing energy-angle pair

Update weight and perform Russian roulette

end if

end for

end parallel foreach

Sort alive/dead neutrons using flagged partition

Update num_alive

end while

Figure 2. Hybrid tracking algorithm.

2.3 Cross Section Treatment

In HFP or burned conditions, it might not be possible

to store all the point-wise cross sections on a GPU due

to the limited memory. Therefore, windowed multipole

(WMP) method [6] is employed to reduce the storage

required to save cross sections. The Faddeeva function

that appear in the formulation is tabulated using wofz()

function in SciPy math library and linearly interpolated

during calculation. However, a few exceptional nuclides

require explicit Faddeeva function calculation because

of large residues. For those nuclides, CUDA version of

CERNLib Faddeeva function [7] is used.
The cross sections in unresolved resonance energy

range and the collision physics data such as fission yield

or outgoing energy-angle distribution are not covered by

the WMP method and thus read from ACE files. Since

the unresolved resonance energy ranges are mostly high

enough to neglect the thermal motion of target nuclei,

the temperature dependence of cross sections does not

have to be taken into account.

In addition, unionized grid and double indexing [8]

method is employed for point-wise cross sections. Since

the unionized grid is generated only for the energies in

Transactions of the Korean Nuclear Society Autumn Meeting

Goyang, Korea, October 24-25, 2019

unresolved resonance ranges, the major drawback of the

unionized grid method in terms of memory requirement

is largely alleviated.

2.4 Optimization for Power Reactor Geometry

The main application targets of PRAGMA are PWRs

that have typical lattice geometries. Thus, the geometry

module of PRAGMA is optimized for square lattices.

The input system and the internal geometry structure

follow those of nTRACER so that the same geometry

input file can be used.

Limiting the geometrical capability to lattice structure

enables cell-based geometry construction. Even though

it lacks generality, it is more efficient than surface-based

geometry representation where cells are defined as the

enclosure of surfaces. In the former, each cell can save

its neighbors’ indices so that the cell index can be found

at no time. However, in the latter, significant overhead

is introduced for the cell index search, especially when

many cells are introduced in the active cycles to obtain

detailed tallies.

There exist millions of cells in a 3D full core model.

However, most cells share the same shape, and usually

there are only tens of different cell types in terms of

shapes. Thus, we define cells with common shapes so

that we can call base cells, and only the shapes of the

base cells are saved on GPU. The global cells hold their

base cell indices and origins of local coordinates.

2.5 T/H Feedback

Currently, a simple 1D closed-channel single-phase

model is employed. The fuel temperatures are calculated

using the finite difference formulation, and the coolant

temperature calculation uses the marching scheme with

enthalpy conservation. To compensate the lack of lateral

mixing, the coolant temperatures are updated assembly-

wise, while the fuel temperatures are updated pin-wise.

3. Results and Discussion

In this section, accuracy and computing performance

of PRAGMA are presented. nTRACER input model of

APR1400 initial core [9] was directly used. Various size

of problems ranging from a single pin to 3D full-core

were solved. As the reference code, McCARD [10] was

used. The isotope composition of the APR1400 model

are listed in Table 1.

Table 1. Problem specification.

Region # of Constituent Isotopes

Fuel 5 or 12 (U, O, Gd)

Gas Gap 2 (N, O)

Cladding 11 (Fe, Zr, Nb, O)

Structure 15 (Cr, Fe, Ni, Mn, Co)

Moderator 4 (H, O, B)

3.1 Verification of Accuracy

The verification was performed for single pins and

assemblies of APR1400. Only point-wise cross sections

were used because there is no corresponding option in

McCARD for the WMP method. The ENDF-B-VII.1

library were used in both codes.

It turned out that the k-effective of PRAGMA agrees

with that of McCARD for all the pin and assembly types

of APR1400 within 10 pcm. Figure 3 illustrates the flux

spectra of the two codes for the 3.65% fuel pin as the

representative, which match each other very well. This

confirms the sound implementation of the continuous

energy calculation kernels in PRAGMA.

Figure 3. Comparison of single pin flux spectra.

3.2 Performance Analysis

For performance assessment, the following in-house

GPU cluster was used. It is a moderate-sized cluster and

equipped with cheap consumer-grade GPUs. We expect

that the clusters with such specification would be readily

affordable in academia and industries.

Table 2. Computing cluster specification.

of Nodes 6

CPU / Node 2 × Intel Xeon E5-2630 v4

GPU / Node 4 × NVIDIA GeForce GTX 1080

Memory / Node 8 × 16GB DDR4 RAM

Interconnect Mellanox Infiniband (56Gbps)

First, a 2D quarter core problem was solved with both

PRAGMA and McCARD and the computing times are

compared in Table 3. McCARD used 432 Xeon E5-

2640 v3 CPU cores. 24 million histories were tracked

per cycle and 200 inactive cycles and 300 active cycles

were used.

Both codes tally pin and assembly power during the

active cycles, and as can be seen, there is almost no

overhead during the active cycles in PRAGMA. Also,

PRAGMA achieves significant speedup over McCARD,

reaching the performance equivalent to McCARD using

Transactions of the Korean Nuclear Society Autumn Meeting

Goyang, Korea, October 24-25, 2019

~6,300 cores. This proves the effectiveness of the GPU

acceleration algorithms and the dedicated optimizations.

Table 3. Computing time comparison.

Code McCARD PRAGMA Speedup

Inactive

(per Cycle)

2:06:04

(37.82s)

0:16:33

(4.96s)
7.6

Active

(per Cycle)

8:09:27

(97.89s)

0:25:38

(5.13s)
19.1

Total 10:15:31 0:42:11 14.6

Second, a 3D full-core model with 36 axial nodes was

solved using different options. In HFP calculation using

ACE library, six temperatures (550, 600, 900, 1200,

1500, and 1800K) were used and linearly interpolated

with respect to T2/3. 100 million histories per cycle, 20

inactive cycles paired with pin-wise CMFD, and 300

active cycles were used. The computing times and the

uncertainties are summarized in Table 4 and Figure 4.

Note that the temperature distribution inside the fuel is

averaged for neutron transport, so there is no overhead

in HFP calculations compared to HZP calculations.

WMP turns out to be much slower than using only

ACE libraries due to the relatively high computational

cost and the requirement of double precision. Note that

for all the other calculations, single precision arithmetic

is enough. In burned conditions, the use of WMP will

be indispensable but its overhead will grow significantly,

so more optimization is required.

The uncertainty of pin and unit cell (axially divided

sub-volume inside a pin) powers are sufficiently small.

Note that only track-length estimator is used for power

tally for the time being.

Table 4. Summary of computing time and uncertainty.

Option
HZP HFP

ACE ACE WMP

Time 2:12:01 2:18:18 4:17:10

Pin Power

Mean / Max σ

0.09%

0.17%

0.09%

0.16%

0.09%

0.16%

Cell Power

Mean / Max σ

0.45%

3.88%

0.45%

3.38%

0.45%

3.42%

Figure 4. Pin power and apparent standard deviation.

4. Conclusion and Future Work

PRAGMA, a GPU-based continuous energy Monte

Carlo code dedicated to analyzing commercial PWRs, is

being developed and the preliminary performances are

promising. Considerable speedup was achieved against

conventional CPU-based MC codes, which proved the

effectiveness of the GPU acceleration algorithms and

the dedicated optimization strategies. In addition, 3D

full-core HFP solutions could be obtained within a few

hours using only 24 cheap gaming GPUs. Using gaming

GPUs instead of scientific-purpose GPUs like NVIDIA

Tesla cards can significantly reduce the cost.

As the future work, further optimizations to improve

the performance, especially focusing on WMP, will be

carried out. In addition, generalized geometry treatment

capability using the NVIDIA ray tracing engine OptiX

and cycle depletion capability will be implemented.

ACKNLOGEMENTS

This work was supported by KOREA HYDRO & NUCLEAR

POWER CO., LTD (No. 2018-Tech-09).

REFERENCES

[1] T. Pandya et al., “Implementation, Capabilities, and

Benchmarking of Shift, a Massively Parallel Monte Carlo

Radiation Transport Code,” Journal of Computational Physics,

308, pp. 239-272 (2016).

[2] P. Romano and B. Forget, “The OpenMC Monte Carlo

Particle Transport Code,” Annals of Nuclear Energy, 51, pp.

274-281 (2013).

[3] R. Bergmann, “The Development of WARP – A

Framework for Continuous Energy Monte Carlo Transport in

General 3D Geometries on GPUs,” Ph.D. Dissertation,

University of California, Berkeley (2014).

[4] N. Choi, J. Kang, H. G. Joo, “Preliminary Performance

Assessment of GPU Acceleration Module in nTRACER,”

Transactions of the Korean Nuclear Society Autumn Meeting,

Yeosu, Korea, Oct. 25-26 (2018).

[5] F. Brown and W. Martin, “Monte Carlo Methods for

Radiation Transport Analysis on Vector Computers,” Progress

in Nuclear Energy, 14(3), pp. 269-299 (1984).

[6] C. Josey, P. Ducru, B. Forget, and K. Smith. "Windowed

Multipole for Cross Section Doppler Broadening," Journal of

Computational Physics, 307, pp. 715-727 (2016).

[7] A. Oeftiger et al., “Review of CPU and GPU Faddeeva

Implementations,” Proceedings of the International Particle

Accelerator Conference (IPAC), Busan, Korea (2016).

[8] J. Leppänen, “Two Practical Methods for Unionized

Energy Grid Construction in Continuous-Energy Monte Carlo

Neutron Transport Calculation,” Annals of Nuclear Energy,

36, pp. 878-885 (2009).

[9] H. Hong and H. G. Joo, “Analysis of the APR1400 PWR

Initial Core with the nTRACER Direct Whole Core

Calculation Code and the McCARD Monte Carlo Code,”

Transactions of the Korean Nuclear Society Spring Meeting,

Jeju, Korea, May 18-19 (2017).

[10] H. J. Shim et al., "McCARD: Monte Carlo Code for

Advanced Reactor Design and Analysis," Nuclear Engineering

and Technology, 44(2), pp. 161-176 (2012).

