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1. Introduction 

 
The Monte Carlo (MC) method in computational 

reactor physics provides the significant advantage of 

simulating neutrons in continuous phase space involving 

energy, angle and space. It can also use the raw nuclear 

reaction data directly. However, due to its probabilistic 

nature, a significant amount of stochastic samples are 

required to produce statistically reliable results. The 

excessive computational burden associated with using 

large samples prevents the use of the MC method in 

practical reactor design analyses. 

The most straightforward approach to alleviate the 

excessive computing time of the MC method is massive 

parallelization exploiting the inherent characteristic of 

mutual independence in particle simulation. The Shift 

code [1] of the Oak Ridge National Laboratory (ORNL) 

and the OpenMC code [2] of MIT had demonstrated 

excellent scaling efficiency with more than 100,000 

CPU cores and thus proved the time-wise practical 

applicability of the MC method on the leadership-class 

supercomputers. 

However, relying on supercomputers is not practical 

in real sense since such systems are not affordable in 

most institutions. There can be, however, an alternative 

of achieving high computing performance using GPUs 

(Graphics Processing Units) which have become more 

popular with the rise of artificial intelligence (AI). A 

pioneering MC neutron transport code, WARP [3] 

developed at U.C. Berkeley succeeded in showing the 

potential of continuous energy MC calculation on GPUs. 

Motivated by the pioneering research, we recently  

initiated the development of a GPU-based continuous 

energy Monte Carlo code PRAGMA (Power Reactor 

Analysis using GPU-based Monte-Carlo Algorithm) for 

‘pragmatic’ applications. Our experiences in the GPU 

acceleration of nTRACER [4] became the basis of the 

development. This paper introduces the challenges in 

offloading the MC method onto a GPU-based platform. 

The algorithms and features of PRAGMA, and some 

preliminary results are presented. 

 

2. Backgrounds and Algorithms 

 

2.1 Characteristics of GPUs and Challenges 

 

GPU is a vector processor and executes instructions 

in the SIMD (Single Instruction Multiple Data) fashion. 

A single GPU card contains thousands of cores but they 

are only partially independent. A core can execute only 

the instructions independently; fetch or decode is done 

totally for a group of cores. Therefore, a single dispatch 

unit controls several cores simultaneously, which means 

that the cores that belong to same dispatch unit always 

receive the same instruction, but operate on different 

data. 

 

 

Figure 1. Schematic diagram of SIMD processing. 

In CUDA, 32 work items are grouped as a warp and 

processed together. When there are not enough work 

items that can be processed in SIMD, the remaining 

threads in a warp are filled with dummy instructions. It 

is called thread divergence and it decreases efficiency. 

GPUs typically have large memory bus to provide 

high memory bandwidth. The memory bus width which 

is the amount of data transferred at each memory access 

ranges from 256 to 1024-bit for modern GPUs. As an 

example, if only a single 32-bit variable is used at each 

memory access with a 256-bit bus, the achieved memory 

throughput is only 12.5%. Thus, in order to maximize 

the memory throughput, adjacent threads should read 

memory contiguously so that multiple access requests 

can be handled by a single transaction through the bus. 

This is called memory coalescing. 

It should be noted that accessing the main memory is 

often a bottleneck and each main memory access can 

waste several hundred compute clock cycles. Although 

the main memory of GPUs is much faster than that of 

CPUs, the relative operating speed is slower because 

GPUs have significantly higher FLOPS. Thus, GPUs 

contain a large pool of registers, which are fast buffer 

memories used to save thread-private local variables. 

Even though the registers are full, the variables are 

spilled to L1 caches which are still fast. Therefore, pre-

fetching reused data into local variables is crucial to 

minimize the memory bottleneck. 

As the result, GPUs are poor at branching instructions 

and random memory accesses due to the SIMD and the 
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coalescing requirement. However, these (branching and 

random access) are exactly what the MC simulation 

requires. Such difficulties led to the introduction of a 

fundamentally different algorithm referred to as event-

based tracking, in contrast to conventional history-

based tracking in the MC particle simulation. 

 

2.2 Tracking Algorithm: History-based vs Event-based 
 

The history-based tracking algorithm traces neutrons 

from their birth to death one by one. It is the most 

straightforward algorithm, but it has been considered 

inappropriate for vector processors like GPUs due to the 

conditional branches. Every neutron undergoes its own  

sequence of ‘events’ which is different from others and 

the choice of an event is randomly determined through 

conditional branches. 

Conversely, in the event-based tracking algorithm 

which was first introduced in 1980s [5] when vector 

processing first became popular in the contemporary 

supercomputing arena, the neutron events are processed 

one at a time, and a collection of neutrons that are about 

to undergo the event are tracked together. By processing 

the event with a SIMD instruction for those neutrons, 

the vectorization capability of GPUs can be exploited. 

The efficiency of the event-based tracking algorithm is 

determined by how well the events are defined and how 

efficiently sorting is done. 

In PRAGMA, a hybrid approach mainly based on the 

history-based algorithm is introduced. This approach is 

based on our observations that the most critical process 

is the cross section reconstruction part, in which random 

memory accesses are dominant over branches. The 

event-based algorithm is for reducing branches not the 

random accesses, so the efficiency of the event-based 

algorithm is limited. The process where the algorithmic 

branch is dominant is the post-collision process where 

fission neutrons are created, reactions are determined, 

and outgoing energy-angle pairs are sampled. However, 

the time portion of the post-collision process appeared 

to be less than ~15%, whose improvement by sorting 

might be marginal and even outweighed by the sorting 

cost itself. 

In addition, even though the history-based algorithm 

suffers from event branches, it has a benefit that local 

memories can be exploited. In the GPU implementation 

of the history-based algorithm, the entire simulation 

loop is wrapped into a one large kernel so that the data 

shared throughout the loop such as the neutron weight, 

energy, local cross sections, or other indices can be 

saved in local variables. However, in the event-based 

algorithm where the event kernels are split, those data 

should be saved to and read from main memory every 

time, since local variables cannot exist across kernels. 

As the result, the tracking algorithm in PRAGMA is 

the history-based algorithm with minimal sorting on the 

status of neutron life and death. As simulation proceeds, 

neutrons die out and neutron array becomes ‘porous.’ 

Such state of active and inactive neutrons being mixed 

up over the threads causes thread divergences. Hence, at 

every kernel call, the neutrons are simulated only by a 

fixed number of iterations and sorted by the life and 

death status. Then, subsequent kernel begins with only 

alive neutrons, and finally, the outer loop continues until 

all the neutrons are dead. The following pseudocode 

illustrates the hybrid tracking algorithm. 

 

while (num_alive > 0) 

Launch GPU kernel with num_alive threads 

parallel foreach num_alive neutrons 

for i = 1 : max_iteration (= 10) 

if (!alive) break 

Calculate macroscopic cross section 

Calculate DTS and DTC 

Move neutron to next position 

if (DTS < DTC) continue 

else 

Sample target nuclide 

Generate fission neutrons 

Sample collision reaction 

Sample outgoing energy-angle pair 

Update weight and perform Russian roulette 

end if 

end for 

end parallel foreach 

Sort alive/dead neutrons using flagged partition 

Update num_alive 

end while 

Figure 2. Hybrid tracking algorithm. 

2.3 Cross Section Treatment 

 

In HFP or burned conditions, it might not be possible 

to store all the point-wise cross sections on a GPU due 

to the limited memory. Therefore, windowed multipole 

(WMP) method [6] is employed to reduce the storage 

required to save cross sections. The Faddeeva function 

that appear in the formulation is tabulated using wofz() 

function in SciPy math library and linearly interpolated 

during calculation. However, a few exceptional nuclides 

require explicit Faddeeva function calculation because 

of large residues. For those nuclides, CUDA version of 

CERNLib Faddeeva function [7] is used. 
The cross sections in unresolved resonance energy 

range and the collision physics data such as fission yield 

or outgoing energy-angle distribution are not covered by 

the WMP method and thus read from ACE files. Since 

the unresolved resonance energy ranges are mostly high 

enough to neglect the thermal motion of target nuclei, 

the temperature dependence of cross sections does not 

have to be taken into account. 

In addition, unionized grid and double indexing [8] 

method is employed for point-wise cross sections. Since 

the unionized grid is generated only for the energies in 
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unresolved resonance ranges, the major drawback of the 

unionized grid method in terms of memory requirement 

is largely alleviated. 

 

2.4 Optimization for Power Reactor Geometry 
 

The main application targets of PRAGMA are PWRs 

that have typical lattice geometries. Thus, the geometry 

module of PRAGMA is optimized for square lattices. 

The input system and the internal geometry structure 

follow those of nTRACER so that the same geometry 

input file can be used. 

Limiting the geometrical capability to lattice structure 

enables cell-based geometry construction. Even though 

it lacks generality, it is more efficient than surface-based 

geometry representation where cells are defined as the 

enclosure of surfaces. In the former, each cell can save 

its neighbors’ indices so that the cell index can be found 

at no time. However, in the latter, significant overhead 

is introduced for the cell index search, especially when 

many cells are introduced in the active cycles to obtain 

detailed tallies. 

There exist millions of cells in a 3D full core model. 

However, most cells share the same shape, and usually 

there are only tens of different cell types in terms of 

shapes. Thus, we define cells with common shapes so 

that we can call base cells, and only the shapes of the 

base cells are saved on GPU. The global cells hold their 

base cell indices and origins of local coordinates. 

 

2.5 T/H Feedback 
 

Currently, a simple 1D closed-channel single-phase 

model is employed. The fuel temperatures are calculated 

using the finite difference formulation, and the coolant 

temperature calculation uses the marching scheme with 

enthalpy conservation. To compensate the lack of lateral 

mixing, the coolant temperatures are updated assembly-

wise, while the fuel temperatures are updated pin-wise. 

 

3. Results and Discussion 

 

In this section, accuracy and computing performance 

of PRAGMA are presented. nTRACER input model of 

APR1400 initial core [9] was directly used. Various size 

of problems ranging from a single pin to 3D full-core 

were solved. As the reference code, McCARD [10] was 

used. The isotope composition of the APR1400 model 

are listed in Table 1. 

Table 1. Problem specification. 

Region # of Constituent Isotopes 

Fuel 5 or 12 (U, O, Gd) 

Gas Gap 2 (N, O) 

Cladding 11 (Fe, Zr, Nb, O) 

Structure 15 (Cr, Fe, Ni, Mn, Co) 

Moderator 4 (H, O, B) 

3.1 Verification of Accuracy 

 

The verification was performed for single pins and 

assemblies of APR1400. Only point-wise cross sections 

were used because there is no corresponding option in 

McCARD for the WMP method. The ENDF-B-VII.1 

library were used in both codes. 

It turned out that the k-effective of PRAGMA agrees 

with that of McCARD for all the pin and assembly types 

of APR1400 within 10 pcm. Figure 3 illustrates the flux 

spectra of the two codes for the 3.65% fuel pin as the 

representative, which match each other very well. This 

confirms the sound implementation of the continuous 

energy calculation kernels in PRAGMA. 

 

Figure 3. Comparison of single pin flux spectra. 

3.2 Performance Analysis 

 

For performance assessment, the following in-house 

GPU cluster was used. It is a moderate-sized cluster and 

equipped with cheap consumer-grade GPUs. We expect 

that the clusters with such specification would be readily 

affordable in academia and industries. 

Table 2. Computing cluster specification. 

# of Nodes 6 

CPU / Node 2 × Intel Xeon E5-2630 v4  

GPU / Node 4 × NVIDIA GeForce GTX 1080  

Memory / Node 8 × 16GB DDR4 RAM 

Interconnect Mellanox Infiniband (56Gbps) 

 

First, a 2D quarter core problem was solved with both 

PRAGMA and McCARD and the computing times are 

compared in Table 3. McCARD used 432 Xeon E5-

2640 v3 CPU cores. 24 million histories were tracked 

per cycle and 200 inactive cycles and 300 active cycles 

were used. 

Both codes tally pin and assembly power during the 

active cycles, and as can be seen, there is almost no 

overhead during the active cycles in PRAGMA. Also, 

PRAGMA achieves significant speedup over McCARD, 

reaching the performance equivalent to McCARD using 
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~6,300 cores. This proves the effectiveness of the GPU 

acceleration algorithms and the dedicated optimizations. 

Table 3. Computing time comparison. 

Code McCARD PRAGMA Speedup 

Inactive 

(per Cycle) 

2:06:04 

(37.82s) 

0:16:33 

(4.96s) 
7.6 

Active 

(per Cycle) 

8:09:27 

(97.89s) 

0:25:38 

(5.13s) 
19.1 

Total 10:15:31 0:42:11 14.6 

 

Second, a 3D full-core model with 36 axial nodes was 

solved using different options. In HFP calculation using 

ACE library, six temperatures (550, 600, 900, 1200, 

1500, and 1800K) were used and linearly interpolated 

with respect to T2/3. 100 million histories per cycle, 20 

inactive cycles paired with pin-wise CMFD, and 300 

active cycles were used. The computing times and the 

uncertainties are summarized in Table 4 and Figure 4. 

Note that the temperature distribution inside the fuel is 

averaged for neutron transport, so there is no overhead 

in HFP calculations compared to HZP calculations. 

WMP turns out to be much slower than using only 

ACE libraries due to the relatively high computational 

cost and the requirement of double precision. Note that 

for all the other calculations, single precision arithmetic 

is enough. In burned conditions, the use of WMP will 

be indispensable but its overhead will grow significantly, 

so more optimization is required. 

The uncertainty of pin and unit cell (axially divided 

sub-volume inside a pin) powers are sufficiently small. 

Note that only track-length estimator is used for power 

tally for the time being. 

Table 4. Summary of computing time and uncertainty. 

Option 
HZP HFP 

ACE ACE WMP 

Time 2:12:01 2:18:18 4:17:10 

Pin Power 

Mean / Max σ 

0.09% 

0.17% 

0.09% 

0.16% 

0.09% 

0.16% 

Cell Power 

Mean / Max σ 

0.45% 

3.88% 

0.45% 

3.38% 

0.45% 

3.42% 

 

Figure 4. Pin power and apparent standard deviation. 

4. Conclusion and Future Work 

 

PRAGMA, a GPU-based continuous energy Monte 

Carlo code dedicated to analyzing commercial PWRs, is 

being developed and the preliminary performances are 

promising. Considerable speedup was achieved against 

conventional CPU-based MC codes, which proved the 

effectiveness of the GPU acceleration algorithms and 

the dedicated optimization strategies. In addition, 3D 

full-core HFP solutions could be obtained within a few 

hours using only 24 cheap gaming GPUs. Using gaming 

GPUs instead of scientific-purpose GPUs like NVIDIA 

Tesla cards can significantly reduce the cost. 

As the future work, further optimizations to improve 

the performance, especially focusing on WMP, will be 

carried out. In addition, generalized geometry treatment 

capability using the NVIDIA ray tracing engine OptiX  

and cycle depletion capability will be implemented. 
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