Comparison of condensation heat transfer on hydrophobic and nano-porous surface

Taeseok Kim\textsuperscript{a}, Sung Joong Kim\textsuperscript{a,b,*}, Jaemin Lee\textsuperscript{c}, Wonjoon Choi\textsuperscript{c}

\textsuperscript{a}Department of Nuclear Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763 Republic of Korea

\textsuperscript{b} Institute of Nano Science & Technology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763 Republic of Korea

\textsuperscript{c} School of Mechanical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea

\*Corresponding author: sungjkim@hanyang.ac.kr

1. Introduction

Condensation is widely used in many engineering fields, such as water desalination [1], water harvesting [2], thermal management system [3], and safety system in nuclear industry [4]. Especially, the condensation heat transfer mitigates pressurization following a severe accident of the nuclear power plants [5]. Passive containment cooling system (PCCS) condensates a large amount of steam to depressurization in containment and removes decay heat using condensation heat transfer. Therefore, the condensation heat transfer performance is related efficiency of the safety feature in the nuclear power plants.

It is well known that surface characteristics such as wettability, topography are highly correlated to the condensation heat transfer. For example, Parin [6] investigated the roughness effect to the condensation heat transfer, and the highly rough surface has 8 times higher condensation heat transfer coefficient than an untreated surface. Izumi [7] used vertical groove surface and enhanced the condensation heat transfer about 25\% than other surfaces. Preston [8] promotes dropwise condensation using chemical vapor deposition (CVD) graphene, so it increases the condensation heat transfer coefficient. There are many studies about the surface effect even if it doesn’t control surface topography. Rykaczewski et al. [9] used oleophobic surfaces to the condensation experiment and enhanced the condensation heat transfer coefficient. Chatterjee [10] perform the condensation heat transfer experiment using hydrophilic and hydrophobic patterned surfaces.

Accordingly, the many researchers have targeted the effects of single surface parameter to the condensation heat transfer. Few studies, however, have examined the combined effects of two or more variables of the surface parameter. In this study, we focused on the surface wettability and porous media effects on the condensation heat transfer.

2. Surface modification

2.1. Fabrication of PEI/MWCNT layer

LbL technique is a coating method to fabricate micro/nano structured film on surfaces of various substrates [11]. LbL is based on electrostatic forces between materials which are charged with different polarity. The charged materials can form layers that are adhesive and uniform along the substrate surface because of electrostatic forces. Compare to other coating methods, the LbL deposition can be used on large areas without specific equipment. Because of this usefulness, the LbL assembly technique has been used for surface thin film formation [12,13].

Multi-walled CNT (MWCNT) is known as excellent thermal property and chemical-mechanical stability, so it has raised much interest during the recent years [14]. The enhancement of condensation heat transfer using the MWCNT was reported by many researcher [15,16]. If it was applied carboxylic-functionalized methods, the MWCNT can be manufactured using LbL deposition. The MWCNTs were functionalized with carboxylic groups (-COOH), which made the negatively charged surface. As for the positively charged surface, polyethyleneimine (PEI) was used to fabricate the LbL assembly with the MWCNT. The fabrication process of the LbL assembled PEI/ MWCNT is presented in Figure 1. First, the substrate was immersed in the PEI 10 minutes, and washed particles are not deposited. In sequence, deep in the MWCNT solution in 10 minutes, it deposited one bi-layer of LbL-PEI/MWCNTs. In this study, a substrate of the LbL coating was deposited with 10 bilayers. This surface is called “CNT” in this paper.

Fig. 1. Scheme for fabrication of LbL-assembled PEI/MWCNT coatings on the substrates

2.2. Deposition of OTS layer

Self-assembled monolayer (SAM) is organic assemblies formed by adsorption of molecular constituents from
solution on the solid surface [17]. SAM technique provides chemical functionality to the surface with the convenient and simple system. The surface modification using SAM also fabricated by the substrates immersed in the coating solution material such as alkylsilane [18]. The surface deposited by SAM has different functionality and affinity by the solution material and substrate. Especially, head group and terminal group of solution material are decided the functionality and affinity of the surface.

In this study, octadecyltrichlorosilane (OTS) which has a methyl group (-CH3) as the terminal group was used for the solution material. The methyl group on SAM makes the surface to hydrophobic functionality, so the hydrophobic functionalization of the surface was conducted by the OTS. The SAM coating was performed by immersing the substrates into an anhydrous toluene solution of 1 mM OTS. The effect of immersion time on SAM formation was saturated after 2 hours in the previous study [19], so this study followed the immersion time as 2 hours. And then, annealing was performed by 120 °C to crosslink silicon molecular of the OTS each other. The SAM deposition does not change surface morphology because the OTS molecular size is almost 2~3 nm [20]. Unchanged surface morphology retains the nano-porous structure of the LbL assembled PEI/MWCNT surface. Figure 2 shows the schematic of the SAM deposition of the OTS. The detailed information about the OTS coating on the stainless steel is available in reference [19].

The CNT+OTS surface also was deposited CNT on the surface, but the OTS was piled up on the nano-porous structure of the CNT. Thus, the CNT+OTS also had hydrophobicity on the surface as shown in Figure 3.

2.4. Surface morphologies of CNT coating

The CNT surface was studied by many researchers due to the enhancement of the condensation heat transfer [15,16]. This is because that the LbL assembled PEI/MWCNT coating makes nano-porous structures which is randomly generated MWCNTs networks on the substrates. To investigate the condensation heat transfer performance of the nano-porous structure, many surface factors related porous media were used in recent researches [21]. The surface characteristic factor of the porous structure has been analyzed such as pore diameter, porosity and porous layer thickness. In this study, to characterize the nano-porous structure of CNT surface, visualization of the surface was conducted by SEM image. Figure 4 (a) shows a 50,000x magnified SEM images of the CNT surface and the measurement of the pore size. Because of intrinsic randomness of LbL deposition, the pore size has a large band from 30 to 120. Figure 4 (b) shows

![Fig. 2. Scheme for fabrication of OTS monolayer coatings on the substrates](image)

<table>
<thead>
<tr>
<th>Bare</th>
<th>CNT</th>
<th>OTS</th>
<th>CNT+OTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Fig. 3. A contact angle of each surface](image)

![Fig. 4. (a) SEM images of CNT layers, (b) the pore size distribution of the CNT surface](image)
histogram of the pore size and result using a statistic tool of Origin Pro. The average size of the pore size was measured by 63.968 nm and standard deviation was 22.522 as shown in Figure 4 (b).

3. Condensation heat transfer experiment

3.1. Experimental set up

The condensation heat transfer experiment system is illustrated in Figure 5 by isometric drawing. The test section was vertical tube made of stainless steel 316 and the length, diameter and thickness are 300 mm, 19.05 mm and 1.24 mm, respectively. The inside of test section, the coolant flowed upstream direction and the saturated steam is condensed on the outside wall of the test section. The saturated steam supplied from 18 kW steam generator to steam chamber through steam/water separator. If the steam is condensed, the condensed water flowed to drain tank. The coolant used DI water at atmospheric pressure, and the coolant temperature and flow rate were controlled by proportional-integral-derivative (PID) control and coolant pump, respectively. Visualization of condensation test was conducted using a high-speed video system (Phantom V7.3 high speed camera). In this paper, the coolant mass flux and the steam pressure were kept to 415 kg/m²s and 55 kPa gauge, respectively.

3.2. Experiment result

First, we took high speed images to determine a mode of condensation “filmwise condensation” or “dropwise condensation”. The dropwise condensation is more efficient to transfer heat because of thermal resistance of liquid film in the filmwise condensation [22]. In this study, each surface had a different condensation mode. The bare and CNT surfaces showed the filmwise condensation, the CNT+OTS and the OTS surface showed dropwise condensation as shown in Figure 6. It is well known that the surface wettability is highly related to the condensation mode. In the bare and CNT surfaces has relatively hydrophilic than the others, so it had filmwise condensation in the experiment. On the other hand, the CNT+OTS and OTS surfaces are hydrophobic surface, so these surfaces had dropwise condensation. This condensation mode is directly connected to the condensation heat transfer performance.
Figure 7 shows the condensation heat flux versus average wall subcooling. The bare has lowest condensation heat flux, followed by the CNT surface. On the other hand, the OTS surface has a highest condensation heat flux, followed by the CNT+OTS surface. Most of them are followed the condensation mode, which is mentioned in the Figure 6. However, the CNT surface had much condensation heat transfer performance than the bare surface even though they have a same condensation mode of filmwise condensation. It is because the porous media of the CNT layers enhanced heat transfer from the tube to the condensed water. The porous layer has more heat transfer area than the plane surface, so it causes high heat transfer performance. On the other hand, the difference between CNT+OTS and OTS is caused by coating thickness. The CNT layer thickness is about 250 nm, it is thicker than the OTS layer which has just about 10 nm thickness. This difference of thickness causes different thermal resistance, so the condensation heat transfer performance is different between CNT+OTS and OTS.

4. Conclusion

In this work, the effect of the CNT and OTS layers and the combined effect of the CNT and OTS coating to the condensation heat transfer have been studied. The OTS deposition makes the surface hydrophobic, and the CNT coating piles up the porous media on the surface. These surfaces characteristic causes the condensation mode of each surface; bare and CNT are filmwise, CNT+OTS and OTS are dropwise condensation. Finally, it is related to the condensation heat transfer coefficient; OTS > CNT+OTS > CNT > bare. This result paves a new path of employing hydrophobic and nano-porous coatings to enhance the condensation heat transfer. Future work should focus on the surface parameter related to the condensation heat transfer

REFERENCES