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1. Introduction 

In this paper, a three-dimensional Fourier analysis of 
the fine mesh rebalance (FMR) acceleration [1] of the 
subcell diffusion equations [2] discretized with LDEM-
SCB(1) [3] is presented to understand convergence 
behaviour of the acceleration method. The Fourier 
analysis is performed by applying the same procedure 
using the translated quantities on the external 
boundaries of the basic elements as suggested by J. S. 
Warsa et al [4]. In addition, the Fourier analysis is 
newly performed with the reflective boundary 
conditions for homogeneous test problems. 

2. Theory and Formulations 

2.1. LDEM-SCB(1) Discretized Diffusion Equation 

In our previous work [2], four subcell diffusion 
equations were derived by consistently discretizing the 
continuous diffusion equations to the LDEM-SCB(1) 
method for solving neutron transport equations. The 
discretized diffusion balance equation over the subcell 1 
in the tetrahedral mesh k is given by 
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where the term jΘ  is defined by 
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where D  is 1 3 tσ , tσ  and aσ  are the macroscopic 

total and absorption cross-sections, respectively, 1
k

scV  is 

the volume of subcell 1, A


 is the face area vector 
whereas φ  and J


 represent the scalar flux and the 

current, respectively. The discretized subcell equations 
represent a discontinuous discretization of the diffusion 
equation and we solve them using a GS-like iteration 
which is represented by the iteration index ( )  in Eqs. 
(1) and (2). 

2.2 Fine Mesh Rebalance Method 

The rebalance method is one of the earliest 
acceleration methods used in the neutron transport 
problems and it has widely been used due to its simple 
and easy implementation for various transport 
discretization methods [5-7]. In our previous work, we 
suggested a linear FMR method [1] to accelerate the 
GS-like iteration of the discretized diffusion equation 
over a tetrahedral mesh k. The balance equation over the 
tetrahedral mesh k is given by. 
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For the linear FMR method, the additive rebalance 
factor ( ), 1/2k +γ   for the scalar flux is introduced as 
follows: 

( ) ( ) ( ), 1 , 1/2 , 1/2 .k k k
j jφ φ γ+ + += +                 (6) 

Substitution of Eq. (6) into Eq. (3) gives following 
final linear rebalance equation over the mesh k: 
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where ( ) ( ), 1/2k jγ ′ +  is the rebalance factor for the 

neighbouring mesh ( )k j′ . The rebalance equations 
compose a system of linear equations whose matrix is 
symmetric positive definite. We iteratively solved the 
rebalance equations with a preconditioned conjugate 
gradient method. 

2.3 Fourier Analysis 

In this section, we present a three-dimensional 
Fourier analysis on tetrahedral meshes to theoretically 
understand the convergence of the FMR method with 
the translation [4] and the reflective conditions. The 
basic element is divided into six tetrahedral meshes of 
equal volume as shown in Fig 1. The Fourier analysis is 
applied to one basic element and the element is assumed 
to be repeated with the translation and the reflective 
conditions. 

 
Figure 1: Subcell division for LDEM-SCB(1)3 

The three-dimensional Fourier ansatz for the 
diffusion and the FMR equations are defined by 
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where k
jφ  is the scalar flux at the local node j of the 

mesh k, and kγ is the additive rebalance factor. In the 

above equations, ( )a r , ( )b r , and ( )k
cd r  are the 

amplitude functions, ω  is the eigenvalue, k
jr is the 

position, k
cr is the centric point of the tetrahedral mesh k, 

and Λ


 is the vector of Fourier wave numbers. The 
position vectors k

jr  of the local node point in each mesh 
are assigned by the global numbers with 

4( 1)i k j= − +  to write the quantities at these local 
nodes in a single vector. 

For the translation condition, the incoming terms of 
Eq. (2) on the tetrahedral meshes that have faces on the 
external boundary and which exist outside the basic 
element are represented in terms of the quantities 
interior to the basic element that are “translated” by the 
width of the basic element [4]. Similarly, the additive 
rebalance factors in Eq. (7) from the external face 
outside the basic element are translated by the terms 
inside the basic element. Substitution of Eqs. (8) and (9) 
into the subcell balance equation (i.e., Eq. (1)) gives 

a b,=A B
                              (12) 

where the matrices A  and B are the complex number 
block matrices each of dimensions 24 24× , and the  
vectors a  and b


 are of dimensions 24 1× . 

The submatrices of A  are of dimensions 4 4× . The 
diagonal submatrices are symmetric and originated from 
the four subcells in each tetrahedral mesh as defined by 
Eq. (1), whereas, the off-diagonal submatrices are 
originated from the incoming terms of the upstream 
meshes as defined by Eq. (2). The off-diagonal 
submatrices also include the incoming terms from the 
boundary face translated along the width of the basic 
element. It is also important to note that if the Jacobi-
like-iteration instead of the GS-like one is implemented, 
then the block matrix A  becomes a block diagonal 
matrix having no off-diagonal submatrices. The 
remaining incoming terms and the translated boundary 
face terms of Eq. (2) compose the submatrices of the 
block matrix B . The upstream mesh numbering and the 
mesh sweeping ordering defines the submatrices of A  
and B . Eq. (12) can be written as  

1a b.−= A B
                               (13) 

Substitution of Eqs. (9) and (11) into the rebalance 
equation (i.e., Eq. (7)) gives 

d a,=F E
                                (14) 

where the vector d


 is of dimensions 6 1× . The matrix 
F  is a complex number matrix of dimensions 6 6×  
with the elements defined by left hand side of Eq. (7). 
As the off-diagonal submatrices of A  and B  in Eq. 
(12) include the incoming terms from the external 
boundary face translated along the width of the basic 
element, similarly off-diagonal elements of F (i.e., the 
coefficients of the rebalance factors) from the external 
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boundary face are translated with the ones interior to the 
basic elements. 

The matrix E  is the complex number block matrix 
with dimensions 6 24×  and the submatrices of E  are 
of dimensions 1 4×  originated for the four subcells in 
each tetrahedral mesh as defined by right hand side of 
Eq. (7). Eq. (14) can be simplified by substituting Eq. 
(13) into it as follows:  

1 1d b.− −= F EA B
 

                      (15) 
Now the substitution of Eqs. (9), (10) and (11) into 

Eq. (6) gives 

cb = a d,ωℜ ℜ ℜ
  +                    (16) 

where the matrix ℜ  is a diagonal matrix and cℜ  is a 
block diagonal matrix having dimensions of 24 24×  
and 24 6×  respectively. 
Substitution of Eqs. (13) and (15) into Eq. (16) gives  

b = b,ω M
 

                          (17) 
where the matrix M  is given by 

1 1 1 1
c= .− − − −ℜ ℜM A B F EA B+            (18) 

The matrix M  is a function of dimensions 
( ), ,x y z∆ ∆ ∆  of the basic element, the position of each 
node point, the Fourier wave numbers, and the material 
properties. This eigenvalue problem i.e., Eq. (17) is 
solved for a wide range of the Fourier wave numbers 
using the power method giving the largest eigenvalue 
for each combination of xλ , yλ  and zλ , and then the 
largest eigenvalue of them is the spectral radius. 

3. Numerical Test and Results 

In this section, three-dimensional Fourier analysis is 
applied to homogeneous test problems to assess the 
effectiveness of the FMR acceleration to LDEM-
SCB(1) discretization method of diffusion equations on 
tetrahedral meshes. The spectral radii obtained using the 
Fourier analysis are compared with the numerical 
estimations of spectral radii which are calculated with 
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The first test problem is a homogeneous basic 
element of variable dimensions to consider the different 
minimum aspect ratios and the translation boundary 
condition. The minimum aspect ratio is defined as the 
ratio of three times the radius of the inscribed circle to 
the radius of circumscribed circle1 [4]. Table I shows 
various minimum aspect ratios of the basic elements of 
different dimensions. In this test problem, the total 
cross-section is 1.0 cm-1 and the scattering ratio varies 
from 0.9 to 0.9999. The spectral radii are plotted as 
decreasing function of minimum aspect ratio as shown 
in Fig. 2. It is observed from Fig. 2 that the FMR 
acceleration significantly improves the convergence of 
the GS-like iteration of LDEM-SCB(1) for various 

aspect ratios even if the spectral radii increase with the 
decreasing minimum aspect ratio. 

Table I: Minimum Aspect Ratio in terms of Dimensions [4] 

# αmin hx (cm) hy (cm) hz (cm) 
1 
2 
3 
4 
5 
6 
7 
8 
9 

0.632 
0.562 
0.487 
0.421 
0.370 
0.327 
0.256 
0.170 
0.116 

1.0 
2.0 
1.0 
2.0 
2.0 
3.0 
2.0 
2.0 
8.0 

1.0 
2.0 
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1.0 
1.0 
1.0 
1.0 
1.0 

1.0 
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3.0 
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10.0 
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Figure 2: Comparison of Analytical Spectral Radii of GS-like 

Iteration and FMR 

The second test problem is the same as that of the 
first test problem except the boundary conditions are 
reflective instead of the translated ones. That’s to say, 
the quantities on the external faces outside the basic 
element are not translated to the interiors of the basic 
element, but the reflective conditions are applied on the 
external boundaries. The spectral radii obtained with the 
Fourier analysis and reflective condition are compared 
in Fig. 3 for various scattering ratios.  
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Figure 3: Comparison of Analytical Spectral Radii of GS-like 

Iteration and FMR Acceleration for Various Minimum Aspect 
Ratios (Reflective B.C.) 

Fig. 3 shows that FMR still accelerates the 
convergence of the GS-like iteration while the 
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convergence becomes considerably slower as the 
minimum aspect ratio decreases. The spectral radii are 
more sensitive on the minimum aspect ratio than those 
with translation boundary condition. However, it is 
noted that the spectral radii with the reflective boundary 
condition at 0.421 and 0.327 minimum aspect ratios are 
significantly smaller than those with translation 
boundary condition. 

Next, for first problem, we compare the analytical 
spectral radii obtained with the Fourier analysis and the 
numerically estimated ones with Eq. (19) to show the 
justification of the Fourier analysis with the translation 
boundary condition. Figs. 4 and 5 show that the 
analytically and numerically estimated spectral radii of 
the GS-like iteration and its FMR acceleration for all the 
minimum aspect ratios nearly agree with each other for 
all values of the scattering ratios ranging from 0.9 to 
0.9999. 
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Figure 4: Comparison of the Analytically and Numerically 

Estimated Spectral Radii (GS-like Iteration with Translation 
B.C.) 
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Figure 5: Comparison of the Analytically and Numerically 

Estimated Spectral Radii (FMR Acceleration of GS-like Iteration 
with Translation B.C.) 

4. Summary and Conclusion 

In this work, a three-dimensional Fourier analysis on 
tetrahedral meshes was successfully performed for 
homogeneous test problems to theoretically understand 
the convergence of the GS-like iteration and its FMR 
acceleration method of the LDEM-SCB(1) method for 
neutron diffusion equation. The Fourier analysis was 

performed with translated boundary conditions and also 
newly with the reflective boundary conditions to show 
the effect of the boundary condition on the convergence. 
The results of the Fourier analysis for a homogeneous 
test problem having different aspect ratios showed that 
FMR with translated boundary condition leads to 
overall faster convergence except for few minimum 
aspect ratios and less sensitive convergence on the 
minimum aspect ratios than the one with reflective 
condition. From this problem, it was also shown that 
FMR with translated condition effectively accelerates 
the GS-like iteration for all the scattering ratios and for 
all the minimum aspect ratios and FMR with reflective 
condition is still effective for all the scattering ratios 
except for very small minimum aspect ratio. The 
comparison of numerically and analytically estimated 
spectral radii for this problem justified the three-
dimensional Fourier analysis for the GS-like iteration 
and its FMR acceleration.  
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