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1. Introduction 
 

Over the last few decades, human reliability analyses 
(HRAs) have been actively investigated in tandem with 
the growing up of probabilistic safety assessment (PSA) 
as a tool to quantify the probability of human failure 
events (HFEs). This is mainly due to the fact that human 
error probability (HEP) has a strong influence on PSA. 

A considerable volume of literature has been 
published on various HRA methods to quantify HEP in 
PSA modeling. All approaches commonly should 
identify the length of time allowed for the operator to 
perform a diagnosis of an abnormal event or to conduct 
relevant mitigating actions. Available times for 
operators are generally estimated using thermal 
hydraulics (TH) system codes, however, it is usually 
estimated from just one TH simulation using a single 
input with semi-bounding conditions. Accordingly, HEP 
can be significantly overestimated. 

To overcome this limitation, this paper deals with 
how to employ TH simulation results to quantify 
reasonable HEP using realistic TH analyses to remove 
the conservatism of current HEP calculation practice. 
The developed method was applied to the rapid 
cooldown operation in a small loss-of-coolant accident 
(SLOCA) in the APR1400 nuclear power plant. 
 

2. HuTEC method 
 

The proposed HuTEC method suggests a more robust 
procedure employing numerous TH simulations with 
exhaustive conditions. Exhaustive conditions can be 
defined from the distribution data of key variables, such 
as operator performance and initiating event conditions. 
In regard to the former, as sufficient amounts of main 
control room (MCR) simulator data have been 
accumulated, reasonable distribution data for operator 
performance is now available. Therefore, once we 
obtain exhaustive conditions for specific operation 
strategies from the relevant distribution data, Monte 
Carlo sampling with multiple TH analyses will lead to 
more a realistic estimation of HEP. 

Fig. 1 illustrates the overall structure of the HuTEC 
method. The procedure consists of four steps: situation 
definition, variable distribution development, multiple 
TH simulations, and HEP estimation. 

The first step, situation definition, is to define the 
accident sequence and simulation variables for a 
specific HFE. Simulation variables consist of two 
categories: operator variables and plant variables.  

 
Operator variables are related with operator 

performance along the target HFE among the input 
variables for TH simulation. Plant variables are all the 
input variables having assorted values; they can be 
initiating conditions and safety system conditions. 

 

 
Fig. 1. Overall flowchart of the HuTEC method (human 

error probability estimation through TH simulation with 
exhaustive conditions) 

 
The second step, variable distribution development, is 

to identify distribution information for all variables 
defined in the first step. For the operator variables, 
because data from MCRs and MCR simulators have 
been continually collected worldwide, we can use them 
to extract distributions of the operator variables. For the 
plant variables, distributions should be developed using 
domain research results case by case. 

The third step, multiple TH simulations, is to conduct 
TH code simulation with the distribution data of the 
defined variables. The Monte Carlo sampling technique 
can produce multiple input sets from several distribution 
data; using these multiple input sets, multiple TH 
simulations can be run. We note that the number of TH 
simulations should be carefully determined, as too many 
simulations can reduce the efficiency of the method 
while too few may not accurately derive HEP, 
especially when HEP is relatively low. Hence, when the 
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target HFE is expected to be low in value, the number of 
TH simulations should be large. 

 
The fourth step, HEP estimation, is to quantify HEP 

using the outputs of the multiple TH simulations. 
Following the general definition of probability, the HEP 
of a specific task in the HRA method can be 
approximated as: 

 
HEP of a specific task ~ m/N,  (1) 
 

Where m and N denote the number of human errors 
observed during the performance of a task and the 
number of opportunities for the performance of the task, 
respectively. 

Similarly, HuTEC suggests that HEP can be 
expressed using the same form as in Eq. (1) but with 
different definitions of the variables; here, m and N are 
the number of TH simulations in which the purpose of 
the specific task fails, and the total number of TH 
simulations, respectively. With this, Bayesian inference 
using the new information may be employed in order to 
increase the accuracy of the resulting HEP. Bayesian 
inference computes posterior distribution according to 
Bayes’ theorem. 
 

3. Application Results 
 

The HuTEC method was applied to the rapid 
cooldown operation in SLOCA in order to quantify 
HEP, with the APR1400 selected as the reference plant 
design for the application study. 

 
3.1. Situation definition 

 
The accident sequence is defined as follows: 
 
(1) SLOCA initiation 
(2) Reactor trip 
(3) Safety injection unavailable 
(4) Operator attempts to execute the RCS rapid 

cooldown operation 
 
With the following main variables defined as: 
 
-  MSADV initial open time 
-  RCS cooling rate 
-  Duration of available safety injection 
-  RCP trip time 
 

3.2. Variable distribution development 
 
With the four main variables defined in the first step, 

the purpose of the second step is to obtain the 
probability density function of each selected variable. 
Table I summarizes the distribution results of the four 
variables used in this application study. 

 
 
 

Table I: Variable distribution summary 
Variable Distribution Evidence 
MSADV initial 
open time 
(Seconds) 

Lognormal 
Ln(X)~N(41, 0.38542) 

MCR simulator 
data [1] 

RCS cooling rate 
(K/h) 

Weibull (10.2, 0.019531) Expert 
judgement 

Duration of 
available safety 
injection 
(Seconds) 

Fail-to-start (98%): 0.0 s 
Fail-to-run (2%): p(t) 
p(t)=1.61E-9*Exp(-1.61E- 
9*t) 

Reliability data 
from the fault 
tree model in 
APR1400 PSA 
[2] 

RCP trip time 
(Seconds) 

Lognormal Ln(x)~N(13, 
0.38542) 

MCR simulator 
data [1] 

 
3.3. Multiple TH simulations 
 

TH analyses for the RCS rapid cooldown operation in 
SLOCA of the APR1400 were performed with MARS 
(Multi-Dimensional Analysis of Reactor Safety)-KS 
code. Monte Carlo sampling and multiple TH 
simulations were performed utilizing MOSAIQUE code. 
In order to obtain overall results for all break sizes of 
SLOCA (0.5–2.0 inch diameter), Monte Carlo 
samplings and TH simulations were performed on major 
break sizes that were judged to be representative of all 
break sizes: 0.5, 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0 inch. For 
two break sizes (0.5 and 1.0 inch), 2,000 input files 
were generated for each case, otherwise 100 input files 
were generated for the remaining cases for a total of 
4,500 randomly generated input files. Multiple TH 
simulations were then conducted on the 4,500 cases 
with 11 days of CPU time using 32 computer processors 
in parallel. Commercial PCs (Intel Xeon CPU 3 GHz, 
Windows 7) were used. Fig. 2 shows the TH simulation 
results for 1.6 break sizes as an example.  
 

 
Fig. 2. TH simulation results for 1.6 inch break size LOCA 

(100 samplings) 
 

3.4. HEP estimation 
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Table II shows the HEP results based on the simple 

calculation in Eq. (1) and Bayesian update results. 
Bayesian update process was performed with the R 
statistical package with LearnBayes [3]. 

Using the 50% values of updated distribution, HEPs 
were then plotted against break size, as shown in Fig. 3. 

    
Table II: Results of Bayesian updates of the HEPs 

Break 
size 
(inch) 

m/N HEP Bayesian Update 
5% 50% 95% 

0.5 0/2000 0.0 4.39E-5 2.95E-4 9.76E-4 
1.0 0/2000 0.0 4.39E-5 2.95E-4 9.76E-4 
1.2 1/100 0.01 1.76E-3 1.18E-2 3.84E-2 
1.4 4/100 0.04 1.68E-2 4.16E-2 8.25E-2 
1.6 41/100 0.41 3.32E-1 4.10E-1 4.92E-1 
1.8 97/100 0.97 9.31E-1 9.68E-1 9.89E-1 
2.0 98/100 0.98 9.46E-1 9.78E-1 9.94E-1 

 

 
Fig. 3. Correlation of human error probability to break size. 

Solid squares indicate the 50% values of Bayesian-updated 
distribution 

 
Initial frequency is the most important factor to 

determine CDF. Cho et al. [4] previously calculated 
SLOCA initiating event frequency function using the 
power law fit method, as shown in Eq. (2): 

 
fSLOCA(x) = 7.82 * 10-4 * x-1.28  (2) 
 
where, x is the break size in inch. 
 
Fig.4 plots the initiating event frequency from Eq. (2) 

and the HEP of the rapid cooldown operation in 
SLOCA from Fig. 3. Using both equations, the single 
HEP value which is frequency-weighted HEP for entire 
SLOCA is calculated to be 0.129. 

 

 
Fig. 4. Initiating event frequency and HEP of the rapid 

cooldown operation in SLOCA as a function of break size 
 

4. Conclusions 
 
The primary aims of the present paper were 1) to 

develop a new method (HuTEC) to quantify the HEP of 
diagnosis error via multiple TH simulations with 
exhaustive conditions of major variables, and 2) to 
obtain updated HEP of the rapid cooldown operation in 
SLOCA using the HuTEC method.  

Because HuTEC produces more realistic diagnosis 
error HEP, we can predict CDF for specific accident 
sequences more precisely. Moreover, because HEP 
implies the feasibility of a specific operation strategy, 
we can review the validity of the strategies in detail. For 
example, we concluded from the application results that 
the rapid cooldown operation strategy in SLOCA is 
reasonable because the diagnosis error of this strategy is 
only about 13% (0.129), in stark contrast to the 100% 
error from the conventional method [2]. 
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