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1. Introduction 

 
Since the neutron transport theories theoretically 

guarantee the best estimation for reactor core analyses, 
they have always been one of the correct answers in 
reactor physics field. As the computing power has 
increased dramatically in last few decades, the neutron 
transport theories are utilized in more and more studies 
nowadays. However, due to the extreme computational 
costs required for the transport calculations, they can 
hardly be applied for a whole core analysis, and not to 
mention the whole core transient analysis, which requires 
much more computational cost than steady-state analysis. 

In these circumstances, the HCMFD (Hybrid Coarse-
Mesh Finite Difference) algorithm for an efficient 3D 
whole core pin-by-pin diffusion analysis [1] and the GPS 
(GET Plus SPH) method for the cross-section corrections 
in pin-wise diffusion analysis [2] have been suggested. 
Based on these methods, it is expected that one can get a 
whole-core pin-wise solution with sufficient fidelity in a 
reasonably short computing time. 

Previously, the application of the HCMFD algorithm 
had been limited to steady-state analyses. In this paper, 
the potential performances, in the aspect of computing 
time, of the HCMFD algorithm for the whole core 
transient analysis are demonstrated with control rod 
movement scenario. 

 
2. Methodology 

 
As introduced in detail in the reference [1], the one-

node and two-node CMFD methods are nonlinearly 
coupled for the local-global iteration in the HCMFD 
algorithm. The global eigenvalue problem is solved by 
the one-node CMFD method, which enables an efficient 
parallel computing by domain decomposition. The local 
domains, fuel assemblies composed of pin-level fine 
meshes in a PWR analysis, are solved in parallel by the 
conventional two-node CMFD method based on pin-
level nodal analysis, the nodal expansion method in this 
work. 

A transient diffusion analysis starts from an initial 
steady state solution prepared prior to the transient 
analysis, and it is based on the following time-dependent 
neutron diffusion equation: 
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With the implicit Euler method applied, Eq. (3) can be 
derived from Eq. (1) for a current time step ts:  
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The current step delayed neutron precursor density 

Cd(ts) in Eq. (3) is expressed as 
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and the integration in Eq. (4) is linearly approximated in 
time as 
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By applying Eq. (5) into the Eq. (4), the current step 
delayed neutron precursor density is then expressed as 
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Substituting Eq. (6) into Eq. (3), following fission 

source iteration form for the transient fixed-source 
problem (TFSP) is derived as 
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(7) 

 
where l is the fission source iteration index. 

In this work, the exponential transformation, Eq. (8),  
is also applied to improve the accuracy of the implicit 
Euler method. The time derivative of the neutron flux 
becomes as Eq. (9).  
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Finally, the TFSP equation corresponding to the 
exponential transformation is obtained as 
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In HCMFD algorithm, this TFSP is solved at two 

levels, in each local domain and in the global domain. In 
each time step, the regional perturbations are first treated 
in local TFSPs and the global constants required for the 
global TFSP are homogenized by appropriate weighting 
based on the local solutions as follows:  
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where I and i are the node index in global and local 
domains respectively. 

The most notable advantage of HCMFD algorithm for 
a transient analysis is that the fission source iteration is 
mainly performed in global sense, assembly-wisely, 
while the local TFSPs and pin-level nodal kernels do not 
need to be solved frequently. Since the local detailed 
quantities are already converged once in the steady-state 
analysis, repeated updates of the local solutions are not 
very influential to the accuracy of the transient analysis. 
This will be discussed again with the numerical results in 
the following sections. 

The overall flowchart of transient HCMFD algorithm 
is shown in Fig 1. 

 

 
Fig. 1. Flowchart of transient HCMFD algorithm 
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Once the local problems are updated, the local TFSPs are 
solved twice, initially once and once more with the 
updated nodal kernel information; local correction 
factors and partial currents on the local boundary. It is for 
a better convergence between the local problems and it 
actually reduces possible numerical instability during the 
nonlinear iterations between local and global problems. 

 
3. Numerical Results 

 
In this work, a 3-D OPR-1000 core was treated to 

figure out a rough computing time for a whole core 
transient analysis achieved by the HCMFD algorithm. 
Detailed core geometry is described in Table I, and 
loading patterns, assembly types are shown in Figs. 2. 
and 3. The pin-wise two-group cross-sections of each 
assembly type are generated using a neutron transport 
code DeCART-2D [3], and a 6-group typical set of 
delayed neutron constants for PWR are used. 

A test transient problems was solved, where the 
perturbation is caused by symmetric control rod 
movements in 8 control element assemblies (CEAs), D06, 
D10, F04, F12, K04, K12, M06, and M10. In the test 
problem, all initially inserted control rods move together 
as shown in Fig 4. They are initially inserted into the 
active core region by 100.263cm (5 axial meshes), 
withdrawn by 3 axial meshes in 3 seconds, then fully 
inserted in 1 seconds. The time-dependent position of 
control rods are discretized by 0.2 seconds to avoid an 
error caused by the time step size difference for the 
transient calculation. 
 

Table I: Core geometry description 
Thermal power 2815.0MWth 

Radial 
configuration 

No. of assemblies 177 
No. of reflector nodes 64 

Axial 
configuration 

Top reflector 20.95cm *1 
Active core 20.0526cm *19 

Bottom reflector 20.95cm *1 

Assembly geometry 20.56cm*20.56cm 
(16 by 16 pins) 

Total No. of coarse meshes 
(No. of local problems) 5,061 

Total No. of fine meshes 1,295,616 
 
The fission source convergence criterion was 10-7, and 

the local and global problems were both solved by a 
BiCGstab (Biconjugate gradient stabilized) method [4]. 
All calculations were performed on Intel Xeon E5-2697 
v3 2.60 GHz CPU with 40 physical cores. Parallel 
computing was performed using the OpenMP parallel 
algorithm [5]. All numerical results of this work are 
obtained by utilizing 40 cores. 

 
 
 
 
 
 

 
Fig. 2. Fuel loading pattern for Cycle 1 

 
 

 
Fig. 3. Enrichment zoning pattern and burnable 

absorber arrangement 
 

 
Fig. 4. Time-dependent position of control rod tip 
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First, the same test problem was solved with fixed time 
step size 0.2 seconds, and with varying the local update 
cycle, where it means the number of fission source 
iterations of global TFSP between consecutive local 
analyses. A large update cycle indicates a less number of 
local analyses in each time step. Table II shows the 
computing time, the average number of global fission 
source iteration per time step, the number of local 
updates per time step, and maximum power error. 

It is notable that the average number of fission source 
iteration is not very dependent on the update cycle if the 
local updates are sufficiently frequent. At the same time, 
the computing time is highly dependent on the number 
of local updates. It indicates that the local calculations 
take major part of the computational loads, so the overall 
computing time can be dramatically reduced if the 
number of local updates can be minimized, as in the cases 
with update cycle larger than 50.  

 
Table II: Numerical results depending on the cycle 

Update 
cycle 

Computing 
time (s) 

Average 
No. of 

iterations 

Average  
No. of 

local updates 

Max. total 
power 

error (%) 
1 3113.498 1084.1 1084.1 Ref. 
2 1580.029 1084.1 542.3 0.000 
5 655.329 1084.3 217.2 0.000 
10 340.899 1084.6 108.8 0.000 
20 189.156 1085.7 54.7 0.000 
50 100.587 1110.0 22.7 0.000 

100 72.499 1182.1 12.1 0.001 
200 65.567 1519.7 7.8 0.007 
300 71.320 1940.1 6.6 0.009 
400 73.548 2163.2 5.5 0.009 
500 75.792 2331.5 4.8 0.019 

9999 33.155 1063.5 1.0 0.608 
 

In the aspect of the accuracy comparing to the case 
with update cycle 1, only a limited level of power error 
was observed even with the update cycle 500, while a 
non-negligible error exists with only 1 local updates per 
time step. This trend can be seen also in the Fig. 5 that 
the power variations are very similar when there are more 
than one local updates. It shows that how frequently the 
local problems are updated is not a major factor that 
affects the accuracy of transient analysis, if they are 
updated more than one time. Considering the accuracy 
and computing time, the update cycle for the following 
analysis was chosen to be 100. 

Table III shows the computing time with various time 
step sizes and with update cycle 100. Since the required 
number of fission source iterations are generally 
proportional to the power variation per time step, the 
average number of local updates are smaller with smaller 
time step size when the update cycle is fixed. The 
computing time for the 4-second transient is only 508 
seconds with a sufficiently short time step, 0.01s. 

 

  
Fig. 5. Power variation during transient 

 
Table III: Numerical results according to time step size 
Time step 

(s) 
Computing 

time (s) 
Average No. 
of iterations 

Average No. of 
local updates 

0.2 72.499 1182.1 12.1 
0.1 114.143 958.1 9.9 

0.05 183.709 755.5 7.9 
0.01 508.852 387.2 4.3 

 
4. Conclusions 

 
It was demonstrated that a reasonably short computing 

time can be achieved by the HCMFD algorithm for a 3-
D whole-core pin-by-pin transient analysis of a PWR 
core even with a sufficiently small time step size, ~500 
seconds with 0.01s time step. 
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