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1. Introduction 

 
McCARD [1] is a Monte Carlo simulation code 

developed by SNU and it has been widely used for 

neutron and gamma transport calculations. It equips a 

built-in PYTHON script interpreter for input processing, 

and this allows users to prepare a well-structured input 

file based on the simple script functions.  

Recently, KAERI uses McCARD code for fast reactor 

design and analysis, and it is found that modeling fast 

reactors in McCARD can be quite complicated and 

messy compared to other MC codes such as MCNP [2] 

and Serpent [3] since other MC codes support simple 

core loading input processing through lattice input cards 

while McCARD does not. The lack of lattice option, 

users have to specify every single surfaces and cells in a 

hexagonal lattice and this leads to a large probability of 

human errors. To overcome this, a simple but efficient 

approach for developing hexagonal lattice in McCARD 

suggested in this paper, hoping that the suggested 

approach can reduce human resources that are wasted for 

struggling complicated input processing in McCARD. 

 

2. McCARD Input Processing for Hexagonal Lattice 

 

2.1 Defining Surfaces of Hexagons 

 

In order to define the surface on a hexagonal lattice, 

three axis are defined first as plotted in Fig 1.  

 
Fig. 1. Definition of axis in a hexagonal lattice 

 

The surfaces orthogonal to axes i, j, k are called 

surface A, B and C as plotted in Fig. 2. The positive 

direction and negative directions of each surface are also 

appeared in Fig 2. Note that the index 0 stands for the 

origin. 

 
Fig. 2. Surfaces of a hexagonal lattice 

 

Assuming that the pitch of hexagon is P, the equation 

that presents each surface is give as follows: 

 

Ai : x =
𝑃

2
∙ 𝑖    (1) 

Bi : x + √3y = 𝑃 ∙ 𝑖   (2) 

Ci : −x + √3y = 𝑃 ∙ 𝑖   (3) 

 
In this manner, the hexagon is defined in McCARD as 

follows: 

 

{ +A-1 AND –A+1 AND +B-1 AND –B+1  

AND +C-1 AND –C+1 }   (4) 

 

 2.2. Surface Index in Hexagonal Lattice 

 

The ordering of hexagons in a hexagonal lattice can be 

simply presented as Fig. 3. The index of capital I, J, K, L, 

M and N mean rotational indexes of a hexagonal lattice, 

which represents 1/6 of a core. The index (j,i) of each 

hexagon represents j-th row and i-th column in each 

rotational index.  

 

 
 

Fig. 3. Indices of hexagons 

 

In this system, the hexagon at I(0,1) can be defined 

with as follows: 

 

{ +A+1 AND –A+3 AND +B0 AND –B2  

AND +C-2 AND –C0 }   (5) 
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Comparing Eq. (5) to Eq. (4), the indices are increased 

2 and 1 for Surface A and B respectively, while it is 

decreased by 1 for Surface C. In this manner one can find 

index increment of each surface for the next hexagon. 

The index change for the next column is summarized in 

Table I.  

Table I: Index change for the movement of next column  

Rotational 

Index 
Surface A Surface B Surface C 

I 2 1 -1 

J 1 2 1 

K -1 1 2 

L -2 -1 1 

M -1 -2 -1 

N 1 -1 -2 

 

Note that the index change for the next row is exactly 

the same as the movement for the next column of the next 

rotational index. For example, the movement for next 

row in rotational index I is exactly the same as the 

movement for next column in rotational index J. 

Therefore, the index increment for the next row can be 

summarized as Table II.  

Table II: Index change for the movement of next row  

Rotational 

Index 
Surface A Surface B Surface C 

I 1 2 1 

J -1 1 2 

K -2 -1 1 

L -1 -2 -1 

M 1 -1 -2 

N 2 1 -1 

 

With table I and II, the surrounding surface at arbitrary 

position can be easily found. For example, the index 

increments at I(3,1) can be defined as follows: 

 

Surface A : 3x1 + 1x2 = 5 

Surface B : 3x2 + 1x1 = 7 

Surface C : 3x1 + 1x-1 = 2 

 

Therefore, the hexagon at I(3,1) can be defined in 

McCARD as follows: 

 

{ +A+4 AND –A+6 AND +B+6 AND –B+8  

AND +C+1 AND –C+3 }         (6) 

 

The translation vector is also required in McCARD 

input processing, and the translation vector in x-y plane 

can be also simply obtained the same way as finding 

surface index. Table III shows the x and y position 

change for x-direction move.  

 

Table III: Position change for the movement of next column  

Rotational 

Index 
x y 

I P 0 

J P/2 √3/2∙P 

K -P/2 √3/2∙P 

L -P 0 

M -P/2 −√3/2∙P 

N P/2 −√3/2∙P 

 

2.3 Algorithm for Building a Hexagonal Lattice 

 

With tables I and II, one can easily find 6 surfaces 

surrounding a hexagon at an arbitrary position. So a 

hexagonal lattice can be simply constructed by following 

algorithm at Fig. 4 

 

 

// Cells 

Define a hexagon at origin 

for irot in (I, J, K, L, M and N): 

    for j in ( 1 ..  NRing ) 

        for i in ( 1 ..  NRing - j ) 

            Define a hexagon at irot (j, i) 

        end 

    end 

end 

 

// Surfaces 

for i in (surface indexes) 

    Define surface Ai (SUR Ai PX 
𝑃

2
∙ 𝑖) 

Define surface Bi (SUR Bi PG  1 √3 0 𝑃 ∙ 𝑖) 

Define surface Ci (SUR Ci PG -1 √3 0 𝑃 ∙ 𝑖) 
end 

 
 

Fig. 4. Algorithm for building a hexagonal lattice 

 

Note that the boundary of hexagonal lattice is the out-

most boundary of the problem, user have to specify void 

hexagon cells so that McCARD Monte Carlo simulation 

can stop tracking the neutron beyond these cells.  

 

2.4 Treatment for Duct 

 

Concave cells are not allowed in McCARD, duct or duct-

like structures should be split into 6 cells. Defining each 

cell in a duct can be sometimes complicated especially 

for dual-duct structures such as control rod assemblies. 

By assigning proper surface indexes, duct cells can be 

defined with a simple pattern. Figs. 5 and 6 show an 

example defining a duct in McCARD. Note that the 

function for surface A, B and C are the same as Eqs (1) 

through (3). Duct inner and outer pitches are used instead 

of 𝑃 ∙ 𝑖. 
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Fig. 5. Typical duct and surfaces 

 

 

DUCT1 : { +A4 AND -A5 AND +B3 AND -C3 } 

DUCT2 : { +B4 AND -B5 AND +C3 AND +A3 } 

DUCT3 : { +C4 AND -C5 AND +B3 AND -A3 } 

DUCT4 : { +A1 AND -A2 AND +C3 AND -B3 } 

DUCT5 : { +B1 AND -B2 AND -C3 AND -A3 } 

DUCT6 : { +C1 AND -C2 AND +A3 AND -B3 } 

 

Fig. 6. Definition of duct cells in McCARD 

 

Multiple-duct structure also can be defined similarly 

using the simple pattern found in Fig. 6. 

 

3. Conclusions 

 

Although McCARD does not provide lattice input 

cards, the built-in PYTHON script interpreter allows 

users to model a complex nuclear reactor with reduced 

efforts. However, modeling a hexagonal lattice problem 

is still complicated because of its complex geometry.  

In this work, an effective approach to model 

hexagonal lattice problem is suggested. The index of 

surface and hexagonal cells are properly defined, and the 

scheme for finding surfaces for each cell is provided 

explicitly. With this approach, even new McCARD users, 

who are not familiar with hexagonal lattice system, can 

model hexagonal reactor problems efficiently. 
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