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1. Introduction 

 
In general, traditional fatigue life estimation models 

have been estimated from numerous end-of-life data 

points, which are usually represented on a strain/stress ~ 

life (S~N) curve plot [1-3]. One data point on the S~N 

curve implies one failure time data of a single fatigue test. 

Therefore, to construct the entire S~N curve with 

probabilistic scatter band requires almost hundreds of 

fatigue tests. However, it may not always be possible to 

conduct hundreds of expensive and time-consuming 

fatigue experiments for each and every different testing 

case. Additionally, aforementioned S~N curve approach 

does not consider the time-dependent behavior of 

material because it is based on the simple end-of-life (i.e., 

failure time) data. In other words, the conventional S~N 

curve approach has disregarded entire data history during 

the fatigue experiment except for the last information. It 

could be a type of data dissipation when only few fatigue 

data sets are available. 

Based on this aspect, we propose a fatigue life 

prediction method based on the time-series experimental 

data. A statistical technique of Markov-Chain-Monte-

Carlo (MCMC) simulation is applied to manage the time-

series data. We apply the proposed method on two stress-

controlled fatigue tests under different environmental 

conditions, such as in-air or pressurized water reactor 

(PWR) water. Finally, the results of the time-series data 

based model are compared with the conventional end-of-

life data based model, which is estimated from precedent 

literature. 

 

2. Time-Series Data Based Life Estimation 

 

To demonstrate the time-series data based modeling 

approach, we used two independent fatigue data sets. 

Table 1 summarized the associated loading and 

environmental conditions of the fatigue tests. All tests 

were loaded symmetrically (i.e., R = -1), and 316 

stainless steel (SS) is used as testing materials. The 

constant amplitude portion of the stress-controlled tests 

was intended to achieve an equivalent constant strain 

amplitude of 0.5%, but the observed strain amplitude was 

not 0.5% because of varying amplitude due to strain 

hardening/softening. 

Figure 1 shows the two observed ratcheting strain 

histories obtained from the stress-controlled test cases 

presented in Table 1. The input cyclic loading consisted 

of the initial 12 cycles of variable stress amplitudes 

followed by constant cycle stress amplitudes. In the first 

12 cycles of variable loading, the stress increased from 

106 to 216 MPa. In the remaining constant-loading 

cycles, the stress was controlled at 216 MPa to achieve 

an intended strain amplitude of 0.5% [4].  

 

Table 1. Symmetric (R = -1) type fatigue loading cases and 

associated environment for time-series data based modeling. 

Test 

Case 
Loading Environment 

ET-F43 
Initial 12 variable amplitude 

and then constant amplitude 

stress-controlled fatigue test, 

with an equivalent intended 

strain amplitude of 0.5% 

300 oC,in-air 

EN-F44 
300 oC, 

PWR water 

 

 
Fig. 1. Cyclic age vs. ratcheting strain data for stress-controlled 

data sets (data from [4]). 

 

Basically, it is ideal to assume the probability of a 

system state may depend on its entire life history (or state 

history). However, for simplification, the Markov chain 

process assumes that the probability of next system state 

depends exclusively on its current state level [5]. In this 

case, we use the ratcheting strain rate in constant loading 

region to classify the system state levels. 

Figure 2 shows an example histogram of the ratcheting 

strain rate in constant loading region for the ET-F43 data. 

We used the default auto binning algorithm built in the 

MATLAB (Ver. 2018a) function histogram, and defined 

the state levels by corresponding each non-zero 

histogram bin in ascending order with a state. In this case, 

the ET-F43 data can be classified by the total state of 32 

and the EN-F44 data can be classified by the total state 

of 50.  

 

Variable 

loading 
Constant 

loading 

× 

× 

Failure: 5,305 

Failure: 4,662 
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Fig. 2. Histogram of ratcheting strain rate for ET-F43 data. 

 

Using the associated time-series state (i.e., the ranking 

number of ratcheting strain rates) profile, we can 

calculate the state transition probability 𝑃𝑖𝑗  as follows: 

𝑃𝑖𝑗 = 𝑃(next state 𝑗 | current state 𝑖) (1) 

The definition of 𝑃𝑖𝑗  is a conditional probability of 

state transitioning from a state 𝑖 to 𝑗. In this case, 𝑖 and 𝑗 

should not be larger than 32 because there are only 32 

states in case of ET-F43 data. Figure 3 shows the 

calculated state transition matrix for ET-F43 data. 

 

 
Fig. 3. Probability matrix of state transition for ET-F43 data. 

 
Fig. 4. Time-series state profile (in red line) and 1,000 MCMC 

simulated state profiles (in light red lines) of ET-F43 data. 

 

Then, according to the assumption of the Markov 

chain process, it is possible to predict the next state 

probabilistically based on the information of the current 

state level. In this step, we performed 1,000 iterations in 

a Monte Carlo simulation to evaluate the uncertainty of 

state transitioning, as shown in Figure 4. 

Thereafter, the Monte Carlo-simulated 1,000 state 

profiles were used for estimating the corresponding 

ratcheting strain rate profiles, and then the associated 

scatter in time-series ratcheting strain evolutions. Figure 

5 shows the resulting ratcheting strain histories and their 

scatters for ET-F43 data through the MCMC simulation. 

The estimated uncertainty or scatter band of observed 

ratcheting strain can be used for estimating the 

cumulative distribution function (CDF) of fatigue 

lifetime. 

 

Fig. 5. Original ratcheting strain profile (in black line), 

estimated 1,000 MCMC ratcheting strain profiles (in grey line), 

and failure strain limits used for CDF calculation data (in red 

line) for ET-F43. 

 

Using these probabilistic time-series data and a given 

failure criterion, we can estimate the failure probability 

of the test specimens. For the stress-controlled test cases, 

in this work, the MCMC-based CDFs are predicted by 

considering a failure criterion of each ratcheting strain 

data limit. For example, the failure criterion of 1.495% 

ratcheting strain is used for ET-F43 data (see Fig. 5).  

Similarly, the failure criterion of EN-F44 ratcheting 

strain is 4.835% (see Fig. 1). Figure 6 shows the resulting 

empirical CDFs calculated from the MCMC ratcheting 

strain simulation for ET-F43 data. 

 
Fig. 6. Empirical CDFs estimated from MCMC simulated time-

series ratcheting strain data for ET-F43 case. 

Failure Criterion 

: 1.495% 
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3. Comparison with End-of-Life Data Based Model 

 

The resulting lifetime CDF of time-series data based 

model can be compared with the respective CDF 

estimated directly based on end-of-life data. With the 

limited availability of time-series test data, this end-of-

life CDF comparison will help to judge the accuracy of 

the overall MCMC method. If the MCMC method is 

found to reasonable, it can be extended for probabilistic 

life estimation by conducting few fatigue tests, which are 

prototypical to the actual loading and environment. This 

method will help to avoid the dependence on traditional 

stress/strain vs. life (or S~N) data, which might have 

been obtained under completely different loading and 

environment conditions compared to the actual loading 

and environmental conditions of interest. 

For this comparison, the lifetime CDFs were estimated 

based on hundreds of end-of-life SS fatigue data [3] and 

the Weibull-Bootstrap method [6]. Table 2 shows the 

comparison of end-of-life and time-series data based 

model conditions and lifetime CDF quartiles. Figure 7 

illustrates the lifetime CDF quartiles derived from Table 

2 for the case of in-air and PWR-water conditions. It is 

shown that the MCMC simulated life distribution 

quartiles are comparable to the Weibull-Bootstrap 

predicted CDF for the in-air case, but it differs in case of 

PWR-water environment. The discrepancy in the PWR 

water case could be due to the following reasons: 

 

 The discrepancy could have been caused by 

completely different types of loading (i.e., displacement-

controlled vs. stress-controlled). 

 The discrepancy could also be due to the type of 

stainless-steel grades used. For example, the end-of-life 

test data (used for Weibull-Bootstrap CDF prediction) 

comprise different stainless-steel grades such as 316, 304, 

etc., whereas the MCMC data are only based on 316 SS 

grade. 

 The discrepancy could be due to the heat 

treatment, and heat of Weibull data set which is different 

compared to the heat treatment and heat of specimens 

used for the MCMC test cases. 

 The Weibull data set was generated from 

fatigue tests conducted at temperatures in a range of 100-

325 °C, whereas the MCMC test case specimens were 

tested at 300 °C. 

 The PWR water test water chemistry and the 

strain rates under which the PWR water tests were 

conducted in a range of 10-5 to 0.3 %/s for the end-of-life 

test data reference, which are taken from precedent 

literature [3]. The underlying end-of-life data set are 

based on both slower strain rate (less than 0.1%/s) and 

higher strain rates (greater than or equal to 0.1%/s) 

fatigue tests. Under a lower strain rate and PWR water 

condition, the (cyclic) fatigue lives could be substantially 

lower than those under higher strain rate PWR-water 

condition. Note that the MCMC models are based on 

PWR-water tests, which were performed close to an 

equivalent strain rate of 0.1%/s. 

 

Table 2. Comparison of end-of-life and time-series data based 

model conditions and lifetime CDF quartiles. 

 
End-of-life data 

based model 

Time-series data 

based model 

Data type and 

source 

Hundreds of end-

of-life data on S-N 
plot from [3] 

Single time-series 

data set of cycle 

versus ratcheting 
strain (ET-F43, 

EN-F44) 

Loading type 
Strain/stroke-

controlled 
Stress-controlled 

Material grade 
316 SS, 304 SS, 

etc. 
316 SS 

Strain amplitude 

Various strain 

amplitude data, but 
model used 0.5% 

amplitude 

Intended strain 
amplitude of 0.5% 

Data strain rate 10-5 to 0.3 %/s 
Strain rate of 

0.1%/s 

Data temperature 100 to 325 °C 300 °C 

Failure criteria 25% load drop 
Ratcheting strain 

limit of data set 

Life distribution 

type 

Weibull distribution 

[6] 

Empirical CDF 

from MCMC 
simulation 

Quartiles 

(in-air) 

[cycles] 

25% 3,741 3,714 

50% 6,291 5,423 

75% 9,475 7,256 

Quartiles 
(PWR- water) 

[cycles] 

25% 761 4,007 

50% 1,567 4,651 

75% 2,769 5,406 
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Fig. 7. Quartile comparison of end-of-life and time-series data 

based model lifetime CDFs based on Table 2. 

 

With a lower strain rate, the environment effect 

becomes much more significant compared to that at 

higher strain rate (the discussed PWR water MCMC 

model case). Hence, additional PWR-water environment 

cases (under different strain rates, especially on lower 

side) are required to justify the above analogies as 

discussed. This area is one of our future studies in plan. 

Nevertheless, the comparison results of the CDFs 

based on MCMC simulation and direct end-of-life data 

demonstrate the potential of MCMC-based probabilistic 

life estimation. The MCMC-based approach can 

facilitate the probabilistic life estimation under any 

loading and environmental condition in practical field, 
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and at the same time, it requires just few test data sets. 

Note that the Weibull CDF predictions are based on 

hundreds of end-of-life data points. It is nearly 

impossible to conduct sufficiently large tests for each and 

every combination of actual reactor component loading 

and environmental conditions. 

 

4. Conclusions 

 

This study suggests a probabilistic modeling approach 

which can consider time-series fatigue data based on the 

MCMC simulation. For the purpose of demonstration, 

we develop the probabilistic fatigue lifetime models 

using the two independent fatigue data sets tested under 

different loading and environment conditions. The 

resulting fatigue models are compared with the 

traditional end-of-life data based models from precedent 

literature. Although some discrepancy is observed in the 

results of lifetime CDF comparison between time-series 

and end-of-life data based models, the comparison 

results highlight the potential of the MCMC-based 

probabilistic life estimation approach. 
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