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1. Introduction 

 
Studies of uranium oxides as nuclear fuels have been 

consistently investigate. For rare earth elements of 
fission products, there exists a solid solution state within 
the uranium oxide compounds [1]. 

There are various effects on the properties of UO2 
depending on the doped content and present in the 
matrix. Especially for Ce material, a fission product, it 
is used to study the structural form on uranium oxides 
because its structural properties are similar to plutonium 
material [2].  

Commonly, Ce cation exists a multivalent type having 
both charges of oxidation state forms: 3+ and 4+. In 
addition, the eight-coordination environment of Ce3+ 
cation, the ionic radius is similar to U4+ cation (Ce3+; 
1.14Å, U4+; 1.0 Å) [3]. Therefore, it is difficult to 
identify structural changes when present in a solid 
solution state within UO2, but the lattice parameter is 
reduced due to oxygen vacancy [4-5]. 

The calculation of lattice parameter includes the 
whole powder pattern decomposition (Pawley and Le 
Bail) and the whole powder pattern fitting (Rietveld 
refinement) [6]. In the Rietveld method, the atomic 
coordinates are required for the calculations, refinement 
of profile and structural parameters [7]. 

In this study, cell parameter calculation methods are 
used to identify changes in the structural lattice 
according to the amount of Ce3+ doped in UO2. 
 

2. Experimental 
 

U1-xCexO2-δ (X = 0 to 0.1) phases where synthesized 
through standard solid-state reactions. Stoichiometric 
amounts of UO2 and CeO2 were ground thoroughly with 
agate mortars and pestles and pressed into pellets. The 
pellets in alumina boats were gradually heated to 
1700 °C for 18h in hydrogen atmosphere. 

The X-ray powder diffraction data were collected on 
a Bruker D8-Advance diffractometer using Cu Kα 
radiation at room temperature with 40 kV and 40 mA. 
The 2θ range was 20-120° with a step size of 0.02°, and 
a step time of 2s. The diffraction patterns were analyzed 
using Pawley, Le Bail and Rietveld method with the 
TOPAS program [8]. The Structural refinement of the 
materials was carried out in the space group Fm-3m 
(no.225) with a starting model based on the reported 
data of UO2 [9]. 

The lattice parameters were refined calculation 
methods, followed in subsequent iterations by the zero 
point error, unit-cell, peak shape, and temperature 
parameters. The energy-dispersive analysis by X-ray 
(EDAX) was carried out using JEOL JSM-6610LV. 

EDAX for U1-xCexO2-δ (X = 0 to 0.1) reveals U : Ce 
ratios of approximately 2 : 0, to 1.9 : 0.1, respectively. 
 

3. Results and discussion 
 
The structural determination of UO2 has been 

extensively published. UO2 crystallizes in the space 
group space group Fm-3m (no.225). In the structural 
fluorite-type of UO2, U4+ cation is bonded to eight 
coordination environment. After synthesizing pure UO2, 
we were able to substitute the U4+ cation for Ce3+ up to 
x = 0.1 successfully to form U1-xCexO2-δ (X = 0 to 0.1). 

U1-xCexO2-δ (X = 0, to 0.1) were not observed any 
crystallographic ordering between U4+ and Ce3+ cations. 
In the solid solutions of U1-xCexO2-δ phases, the U4+ and 
Ce3+ were statistically disordered over the actinide metal 
sites. The powder XRD pattern for U1-xCexO2-δ phases 
are shown in Fig. 1. 

 

 
Fig. 1. Powder X-ray diffraction data for U1-xCexO2-δ (X = 0, 
to 0.1). 

 
See the Fig. 1. The diffraction peaks move to the 

right with increasing amounts of Ce3+ on the U4+ site, 
although, the larger ionic radius of Ce3+ compared with 
U4+ in eight coordination environment, which can be 
attributed to the oxygen vacancy [4-5]. 
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Fig. 2. Calculation by Rietveld refinement of lattice 
parameters as a function of the Ce occupancy for U1-xCexO2-δ 
(X = 0 to 0.1). 
 
To check the lattice parameters U1-xCexO2-δ phases, 
whole powder pattern decomposition and fitting 
methods were used. As seen in Fig. 2, the calculation 
results show that experimental compounds cell 
parameter slightly decrease with increasing Ce3+ on the 
U4+ site. 
 

4. Conclusions 
 

The pure samples of U1-xCexO2-δ phases have been 
synthesized using standard solid-solution techniques. 
The structures of the reported products were 
characterized by powder X-ray, EDAX, and fully 
analyzed using calculation methods (TOPAS). The 
substitution of Ce3+ cations into the UO2 lattice is 
confirmed by lattice parameters from XRD patterns. It 
shows that presence of Ce-oxygen vacancies are 
decreasingly dominated in the work are applicable to 
interpret the oxidation behavior of spent nuclear fuel 
containing various fission products. 
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