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1. Introduction 

 

A nodal method based on the AFEN method [1-6] in the 

hexagonal geometry has been developed to improve the 

computational efficiency of the higher order finite element 

method (FEM) installed in CAPP.[7] As an effort to 

achieve this purpose, an AFEN equivalent method based 

on the single-node nonlinear finite difference Method 

(FDM) Response Matrix has been tried but it cannot 

provide a numerically stable solution as noted in Ref. 8. 

Several attempts, including recommended in Ref. 8, to 

improve the numerical stability have been made but they 

were in vain. The FDM response matrix methods have not 

been successful as long as they are fundamentally based on 

the single node AFEN solution. 

As noted in Ref. 8, the one-node based nonlinear FDM 

is more suitable for the response matrix method than the 

two-node based one. However, it failed to provide a 

numerically stable solution. To ensure numerical stability, 

the direct response matrixing of the refined AFEN with 

interface flux moments[4] has been adopted in this paper 

rather than detouring via a two-node nonlinear FDM 

response matrix equivalent to the AFEN. In general, a 

response matrix method has the advantage that in the 

calculation of the unknowns and their matrix coefficients 

of a node, the domain can be confined within the node 

independently of its neighboring nodes. It calculates the 

six outgoing interface partial currents of each node at each 

inner iteration step by solving the node with the boundary 

conditions of six incoming interface partial currents. 

Considering that one interface is shared by two nodes, it 

can be noted that three interface unknowns are 

equivalently calculated per each single node calculation. 

On the other hand, the original AFEN method[4] 

determines only one interface unknown by solving a two-

node problem by imposing flux and current continuity 

conditions across the interface between the two nodes. 

Therefore, assuming the same number of outer iterations is 

involved to achieve the same accuracy, the response 

matrix method becomes much more efficient than the 

original AFEN method. 

The refined form of AFEN which uses the interface flux 

moments instead of the corner points as nodal unknowns 

fits more to the concept of the response matrix which can 

be defined as a response (i.e., outgoing partial currents) of 

a single node to the input (i.e., incoming partial currents). 

It is difficult to define (not a flux but) a partial current at a 

corner point of a node. 

This paper presents the results of a two-dimensional 

reactor core analysis using the proposed method. The main 

numerical performance will remain the same even if it is 

expanded to three dimensions. 

 

2. Methodology 

Deriving the AFEN Response Matrix which expresses 

the outgoing interface partial currents into the incoming 

interface partial currents has two steps for convenience. In 

the first step, the AFEN single node is solved to obtain the 

relationship between the interface fluxes and the interface 

currents. In the second step, the response matrix is derived 

by replacing the interface fluxes and interface currents in 

this relationship with the incoming and outgoing interface 

partial currents.  

The first step is identical to that described in Ref. 8, but 

it is repeated almost as it is in the reference for the sake of 

readability of this paper. 

 

2.1   AFEN Solution of Single-Node Problem [4,8] 

2.1.1 Intranodal Flux Expansion 

 

Solving the single node problem with interface 

current and current moment boundary conditions by the 

AFEN methods starts from expending the intranodal 

flux distribution into the analytic basis functions with 

and without transverse-direction linear functions. 
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and D  and   are the diffusion coefficient and 

crosssection matrixes, respectively and A’s and B’s are 

expansion coefficients. Here, (x, y), (u,v) and (p,q) are 

the three coordinates in Fig. 1 introduced for 

convenience.  

 
Fig. 1. Coordinate systems and nodal unknowns 
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Note that this flux expansion has twelve terms with 

one coefficient each and all of them completely satisfy 

the diffusion equation for the node. Of course, both the 

basis functions and the coefficients of this expansion 

are square matrices with the number of energy groups 

as its order. However, thanks to the matrix function 

theory, they can be treated like scalar as long as they are 

functions of  .[9,10] 

The average flux of the node is defined from this flux 

expansion as follows. 
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The interface fluxes and the flux moments e.g., at the 

x1 interface are respectively defined by 
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Here, w(y) is the weighting function. Two types of w(y), 

i.e., the step function and the linear function of y are 

used as the weighting function. 
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If the step function is used, it is equivalent to the case 

where an interface is cut in half and the continuous 

condition of flux and current is applied for each half of 

the interface. 

Strictly speaking, when applying equivalence theory, 

the interface fluxes and moments in Eqs. (5) and (6) are 

homogeneous ones. They are multiplied by the 

discontinuity factors to yield the heterogeneous ones. 

However, for simplicity of derivation, we ignore the 

discontinuity factors at this moment. In implementing, 

of course, the discontinuity factors are involved. 

Further, the interface current and the current moment 

at the example interface are consistently defined by 
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2.1.2  AFEN Solution of Single-Node Problem 

 

Solving the single node problem in Fig. 1 to obtain the 

intranodal flux distribution means expressing 12 coefficients 

of the flux expansion Eq. (1) in terms of 6 interface currents 

and 6 interface current moments. This problem seems to 

involve inversing a 12x12 matrix. However, the decoupling 

transformation of Ref. [4] simplifies it to a problem of 

inversing several smaller matrixes. 

This transformation transforms both the flux 

expansion coefficients and the nodal unknowns. First, 

the parity transformation transforms the nodal 

unknowns into their even and odd forms e.g., in the x-

direction: 
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Applying symmetric thinking, the even and the odd 

forms of the interface currents and current moments are 

defined as follows: 
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Now, the direction transformation transforms the 

coefficients of the expansion flux and the nodal 

unknowns further as shown below. 

3
,

3
,

3
kkk

pkuk
χ

pkukxk
ε

pkukxk CC
C

CCC
C

CCC
C










2


  (14) 

33

2
,

3
sss

psuspsusxspsusxs ωω
ω

ωωω
ω

ωωω
ω








  ,

 (15) 

33

2
,

3
sss

psuspsusxspsusxs σσ
σ

σσσ
σ

σσσ
σ








  ,

(16) 

where coefficient letter C is A or B, interface index k is 

0 or 1 and even-odd index s is e or o. 

Expressing the transformed unknowns in terms of the 

transformed expansion coefficients, we can realize that 

the original 12x12 matrix equation is decoupled with 

four 2x2 matrix equations and four scalar equations. In 

particular, two of the four 2x2 matrixes are in the 

relationship of similarity transformation to the other 

two. Therefore, solving a single-node problem simply 

involves finding the inverses of two 2x2 matrixes and 

four scalars, for example: 
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where M and T are 2x2 matrixes with elements of 
matrix functions. 

By eliminating the coefficient vector, the interface 

fluxes and flux moments can be expressed in terms of 

the interface currents and current moments, which are 

boundary conditions e.g., as follows: 
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where TM-1 is also a matrix function system of  . It is 

noted that any matrix functions of a matrix can be 

evaluated easily, e.g., by diagonalizing the matrix using 

its eigensystem. However, it will be soon realized that 

this kind of luck is not maintained in the final response 

matrix equation. 

 

2.2   AFEN Response Matrix 

The response matrix that computes the output, which are 

the outgoing interface partial currents and moments out of 

a node, from the input, which are the incoming interface 

partial currents and moments into the node, is derived by 

noting that the interface partial currents and moments at 

the interface s in the direction d are expressed in terms of 

the interface fluxes, flux moments, currents and current 

moments given the equations from (6) to (9). 
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where flow direction index f is in or out, direction index d 

is x, u, or p, and k is the interface index annotated just 



Transactions of the Korean Nuclear Society Spring Meeting 

Jeju, Korea, May 23-24, 2019 

after Eq. 16. Then, the interface fluxes and currents are 

equivalently given by 
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Since the relationships (19) and (20) are linear and the 

parity and direction transformations explained in the 

previous section are also linear, the partial currents and 

moments shall have their transformed forms with 

respect to the both transformations and these forms 

shall have the relationships corresponding to those of 

Eq. (20) and (21) as follows,  
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Substituting these relationships into Eq. (18) and 

solving for the transformed outgoing partial currents, 

we finally obtain the response matrix in the transformed 

system as follows, 
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where Q = - (2I + TM-1D-1) -1 (2I – TM-1D-1). Unfortunately, 

the matrix, 2I + TM-1D-1 is not a matrix function of 
anymore because it contains the diffusion coefficient 

matrix D. Therefore, the inversion of this matrix 

becomes a full inversion of a 2G X 2G matrix. 

Note that the interface partial currents and moments 

can be easily transformed into their linearly transformed 

partners and vice versa. Once the interface incoming 

partial currents and are given for a node, the interface 

outgoing partial currents and moments can be 

calculated by, e.g., Eq. (18). Then, these outgoing 

partial currents become the partial currents incoming 

into its neighboring nodes. This provides an iterative 

process to solve the whole entire core eigenvalue 

problem through the well-known inner-outer iteration. 

As mentioned in Ref. [4], the inverse of M is singular 

when one of the eigenvalues of the crosssection matrix 

is very small. This singularity is removed in the manner 

described in the reference. 

 

2.3 Assistive Techniques 

2.3.1. RGB Sweeping Scheme1[8] 

 

As described above, the response matrix calculations 

are performed only within a single node regardless of 

neighboring nodes. Therefore, these calculations are 

carried out by sequentially moving from one node to 

another. In this case, it is advantageous to sweep the 

nodes by dividing them into red (R), green (G), and 

blue (B) nodes as shown in Fig. 2, like checkerboard 

sweeping for a rectangular node core. 

This kind of iteration schemes is known to be good in 

convergence and stability due to geometrical balance. It 

further enhances the advantage in parallel-computing 

that the response matrix method has already. 

In addition, the memory required is saved by storing 

inputs of the response calculation, i.e., incoming partial 

                                                 
1 This part repeats Ref. [8] with some modifications 

currents and outputs, i.e., outgoing partial currents in 

the same storage. This is because the outgoing partial 

currents resulting from previous two other color types 

of node calculations automatically become incoming 

partial currents for the third kind of node calculations. 

 
Fig. 2. RGB sweeping scheme 

 

2.3.2. Nonlinear FDM Acceleration 

 

As described in Ref. [8], if we define the two 

nonlinear correction factors per interface, the FDM 

response matrix corresponding to the AFEN one in the 

equation (25) is given at the interface s of a node by 
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for the partial current moments. Here, all the notations 

have the same meanings as in Ref. [8]. 

In order to accelerate the overall computational time, 

we may consider an iteration scheme that repeats 

sequentially a certain number of the FDM outer 

iterations with Eq. (26) and (27) and the other number 

of the AFEN iterations with Eq. (25). Of course, the 

nonlinear correction factors 
sgsg dD

~
 ,

~ are calculated at the 

every exit of AFEN iterations to make two types of 

iterations equivalent to each other as follows, 
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This iteration is different from the nonlinear FDM 

iteration described in Ref. [8]. The former updates 

partial currents consistently in both the FDM and AFEN 

iterations but the latter updates them only in the FDM 

iteration while AFEN is used only to evaluate the 

nonlinear correction factors. 

 

3. Numerical Results and Discussion 

 

In order to verify the AFEN response matrix method 

developed in this study, we solved the VVER440 

benchmark problem described in Ref. [4].  The results 

are compared in Table I with those of the conventional 

form of the refined AFEN method in Ref. [4] and those 

of the FDM response matrix method without any 

nonlinear correction factors. The boundary condition is 

the zero incoming partial current for the two response 

matrix methods and the zero flux for the conventional 

form of the AFEN method. Therefore, the k-effective 

difference between two AFEN methods is purely due to 

the different boundary conditions. This difference is 
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slightly larger because a small node size makes this 

problem sensitive to the boundary condition. 

The refined AFEN response method significantly 

outperforms the conventional AFEN method 

numerically. The number of outer iterations required to 

obtain the same computational accuracy is less than half 

that required for the conventional AFEN method. 

Because a single outer iteration step for the response 

matrix method is more efficient than that for the original 

AFEN method as explained in Introduction, the whole 

computing time consumption is significantly low in the 

response matrix method. 

The acceleration scheme presented in the Section 

2.3.2 was also tested against the VVER440 problem. 

Many combinations of the number of the FDM iteration 

and that of the AFEN iteration were tried but none of 

them could accelerate the AFEN response matrix 

although some resulted in a numerically stable scheme. 

It is recalled that the acceleration scheme proposed in 

Ref. [8] even fails to give a stable scheme. As seen in 

Table I, the original FDM requires more number of 

outer iterations to achieve the same accuracy compared 

with the AFEN response method. This means that the 

diagonal dominance of the FDM response matrix is 

smaller than that of the AFEN one. In general, the 

nonlinear FDM with correction factors makes the 

diagonal dominance even worse compared to the FDM 

without correction factors. Awkward idea to accelerate 

the system with higher diagonal dominance using the 

system with lower diagonal dominance may be the 

reason why the nonlinear FDM acceleration is 

unsuccessful. If this is true, any nonlinear FDM 

schemes including ones based on even the two-node 

problem will fail. 

 

Table I. Results of the VVER440 problem (1/6 core) 

 K-eff(1) 
# of 

iterations(2) 
Computing 

Time (msec)(3) 

AFEN RM 1.009646 460 70 

Original AFEN 1.008632 1,111 192 

FDM 1.018224 660 30 

(1) The k-effective value calculated by a FDM fine mesh calculation 
with the zero-flux boundary condition is 1.008636. This boundary 

condition is consistent with the original AFEN (but not with the 
AFEN response matrix (RM)). 

(2) # of outer iterations required to achieve a less than 10-7 accuracy 

in both k-effective and node-wise sources 
(3) Measured in a PC with Intel®  Core™ i7-4930K CPU 

 

4. Conclusions 

 

The nonlinear FDM-based AFEN response matrix 

method in the hexagonal geometry proposed in Ref. [8] 

to improve efficiency of the CAPP code failed to give a 

numerically stable scheme. Therefore, giving up any 

nonlinear FDM response matrix methods equivalent to the 

AFEN, the direct response matrix formulation of the 

refined AFEN with interface flux moments has been 

developed in this paper. In this method, the partial 

current moments are used as nodal unknowns instead of 

the corner point fluxes.  

This method was tested against the VVER440 

benchmark problem and verified that it could provide 

much faster computing speed compared to the original 

refined AFEN method. In addition, it was found that the 

diagonal dominance of this method was larger than 

those of the FDM and the original refined AFEN 

formulation by judging by a reduced number of outer 

iterations to reach the same accuracy. This was presented 

as a cause of poor performance of the nonlinear FDM 

schemes in accelerating the AFEN response matrix. 
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