A New Design Concept of Burnable Poison for Longer Cycle PWR

Aiman Dandi and Myung Hyun Kim Department of Nuclear Engineering, Kyung Hee University

> May 23-24, 2019 Jeju, Korea

Outline

- 1. Introduction
- 2. Reference Design Model
- 3. New Design Concept of BP
- 4. Calculation Results
- 5. Conclusions and Future Work

Introduction

Motivation

□ Limitations of Conventional Burnable Poison (BP)

• This table shows the advantages and disadvantages of conventional BP*

Limitations	Gadolinia	Erbia	IFBA	WABA
Affect on Fuel Performance	 Displaces fuel Reduces thermal conductivity 	 Displaces fuel Reduces thermal conductivity (if >2w/o) 	 Increases rod internal pressure 	 None Limited to GT without control rod
Residual Reactivity Penalty	• High	 High (if >2w/o) Moderate 	Negligible	• Low
MTC Control	• Good	Very Good	• Good	• Good
Reactivity Control	Strong local	Dispersed	Dispersed	Strong local
Power Peaking	• High	• Low	• Low	• High

* S. Jeffrey R and B. Jeffery A, "Westinghouse PWR Burnable Absorber Evolution and Usage," 2010.

Motivation

Previous Studies

- Many studies suggested different solutions In order to overcome the disadvantages of the conventional BP:
 - > To use single isotopes ⁽¹⁾,
 - > To use $UO_2^{-157}Gd_2O_3$ rod covered with a thin layer of $Zr^{167}Er_2^{(2)}$,
 - > To use small concentration of Er_2O_3 with all fuel rods ⁽³⁾,
 - ➢ To use BigT absorber ⁽⁴⁾,
 - ➢ To use SLOBA absorber ⁽⁵⁾,
 - To use AIGdO₃-UO₂⁽⁶⁾,
 - \blacktriangleright To use the combination of two different conventional BP in the same FA ⁽⁷⁻¹⁰⁾.

(1) Renier, J.P.A., Grossbeck, M.L., Development of Improved Burnable Poisons for Commercial Nuclear Power Reactors, ORNL/TM-2001/238, Oak Ridge National Laboratory (2001).

(2) J. Choe, H.C. Shin, D. Lee, New burnable absorber for long-cycle low boron operation of PWRs, Ann. Nucl. Energy 88 (2016) 272-279.

(3) E. Jeong, H.C. Shin, J. Choe, D. Lee, Impact of Erbia in Long Cycle Operation of PWR, in: 2016 Transactions of the Korean Nuclear Society Autumn Meeting, Gyeongju, Korea, October 27-28, (2016).

(4) H. Yu, M.-S. Yahya, Y. Kim, A Reduced-Boron OPR1000 Core Based on the BigT Burnable Absorber, Nuclear Engineering and Technology (2016).

(5) Boravy Muth, Parametric Study on Burnable Absorber rod to Control Excess Reactivity for a Soluble Boron Free Small Modular Reactor, KINGS (2016).

(6) S.A. Pokrovskiy, V.G. Baranov, A.V. Tenishev, Thermal properties of (AI,Gd)O3 doped uranium dioxide, IOP Conf. Ser.: Mater. Sci. Eng. 130 (2016) 012026

(7)] Jeffery A. Brown, Ho Q. Lam, Hybrid IFBA Gad Assembly Designs for Long PWR Cycles, in: 2017 Water Reactor Fuel Performance Meeting, Ramada Plaza Jeju, Jeju Island, Korea, Sep. 10-14, 2017.

(8) F. Franceschini, B. Petrovic, Fuel with advavced burnable absorbers design for the IRIS reactor core: combined erbia and IFBA, Ann. Nucl. Energy 36 (2009) 1201-1207.

(9) Aiman Dandi, MinJae Lee, Myung Hyun Kim, Soon Ki Kim, Sang Rin Shon, Combination of Burnable Poison Pins for 24 months Cycle PWR Reload Core, in: 2018 Transactions of the Korean Nuclear Society Spring Meeting, Jeju, Korea, May 17-18, (2018).

(10) MinJae Lee, Aiman Dandi, Myung Hyun Kim, Soon Ki Kim, Sang Rin Shon, The Combinational Use of Burnable Poison Pins for 24 Months Cycle PWR, in: 2018 Transactions of the American Nuclear Society Summer Meeting, Philadelphia, Pennsylvania, USA, June 17–21, (2018).

Motivation

□ This Study

• An attempt was done to invent a new BP design with good properties.

Reference Design Model

Design Tools

• DeCART2D code was used to perform assembly calculations.

□ Note:

- In this study the concentration is on the performance and characteristics of the new BP design.
- Therefore, core calculation is beyond the scope of the study.

□ Reference Design

• 17×17 WH type.

Design Modification

 Only the fuel enrichment was increased > 5w/o (6.96w/o) in order to simulate longer cycle operation.

Reference Fuel Assembly Design Parameters

• This table and Fig.1 show the WH Fuel Assembly Design Parameters.

Design Parameter	WH	
Fuel Rod Array	17×17	
Number of Fuel Rods	264	
Active Fuel Length	365.76	
Number of Guide Tube	24	
Number of Instrumentation tube	1	
Fuel Assembly Length (cm)	406.3	
Fuel Assembly Pitch (cm)	21.5040	
Fuel Rod Length (cm)	388.1	
Cell Pitch (cm)	1.260	
Fuel Diameter (cm)	0.8192	
Cladding material	ZIRLO	
Cladding I.D. (cm)	0.8357	
Cladding O.D. (cm)	0.95	
Guide Tube material	ZIRLO	
Guide Tube I.D. (cm)	1.008	
Guide Tube O.D. (cm)	1.224	

Fig. 1. WH fuel assembly type

The Story Behind The Design

- Each BP has its own advantages and disadvantages.
- Previous studies suggested to combine two or three different BP types to optimize their performance.
- In this study different absorber materials combined together in the same discrete BP pin.
- The easiest method is to make different tubes inside each other.

• Matryoshka Doll Burnable Poison (MDBP) came to exists.

Matryoshka Doll Burnable Poison (MDBP)

□ Note:

- MDBP can consist more than two tubes.
- Any absorber material with any concentration can be used.
- In this study MDBP consists of two tubes (Al₂O₃-B₄C & ZIRLO+40%Er₂O₃) inside each other and covered with clad as shown in Fig.3.
- MDBP is installed in GT.

MDBP Advantages

Manufacturing Advantages

- Easy to manufacture,
- A radiological regulated facility is not required to manufacture it,
- At refueling time MDBP can be removed from the fuel assembly,

Performance Advantages

- Flexible to optimize,
- The neutron flux can reach the absorber material from inside and outside,
- Strong effect to hold-down the initial excess reactivity. (Less # is required than WABA)
- More negative MTC value due to Er.

Study Cases Design Parameters

• This table shows the Design Parameters of MDBP and conventional BP

Design Parameter	MDBP	WABA	IFBA	Gadolinia	Erbia
# of BP pins in FA	24	24	96	24	96
Absorber Material	1) Nat.B 2) Er	Nat. B	Nat. B	Gd	Er
Concentration	1) 10.96w/o 2) 40w/o	10.96w/o	19.15w/o	8.0w/o	2.0w/o
Fuel enrichment	-	-	-	2.5w/o	6.96w/o

*Normal fuel enrichment = 6.96w/o

• MDBP is compared with the conventional BPs in terms of k-infinite, Peaking Factor and MTC.

k-infinite

□ At BOL

- MDBP and Gad have the highest ability to hold-down the initial excess reactivity by 12,500pcm.
 - Due to the larger amount of BP in MDBP.

□ At MOL

- Only MDBP can hold-down the excess reactivity effectively.
 - Due to the slow depletion of Er in MDBP.

- MDBP and Erbia have almost the same residual reactivity penalty about 1,162pcm.
 - Due to the undestroyed Er daughter isotopes in MDBP.
- It is much lower than Gad (2,800pcm).

Peaking Factor

□ At BOL

- Even though MDBP and Gad have the same strength to hold-down the initial excess reactivity, MDBP has lower peaking factor.
 - > Due to smaller absorption cross-section of B and Er in MDBP.

□ At MOL & EOL

• Differences of all cases become small except Gad case has peaking factor much higher.

□ Note:

 The peaking factor value no need to be very low, but should be within the design limitations.

MTC

- MDBP and Erbia have the most negative MTC about -31.07 pcm/C°.
 - Due to the resonant behavior effect of Er in MDBP.
- This means MDBP and Erbia have the highest chance of MTC to be negative at HZP.

□ Note:

• The MTC value no need to be very low, but should be within the design limitations.

Conclusions

Conclusions and Future Work

Conclusions

- Matryoshka Doll Burnable Poison (MDBP) is firstly introduced in this study.
- MDBP reduces the initial excess reactivity by about 43%.
- MDBP last longer than any other design by about 30%.
- MDBP can be removed from the fuel assembly during the refueling time.
- MDBP guarantees the MTC value as negative as Erbia case.
- Even though any BP designs provide power peaking factor within the design limitation are acceptable, MDBP case has lower power peaking factor than Gad case.

Future Work

• More investigation is needed.

Thanks for your attention!

