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1. Introduction 

 
The underestimation of variance due to the inter-

cycle correlation of fission source sites has been an 

issue of Monte Carlo (MC) community. There have 

been researches to quantify the amount of variance bias 

and to understand the phenomenon [1][2], and 

nowadays the underestimation of variance is well known.  

Recently, another type of variance bias, 

overestimation of the variance, is observed in MC multi-

physics simulation. In this paper, the overestimation 

phenomenon induced by thermal/hydraulics feedback 

and equilibrium xenon feedback is studied on BEAVRS 

benchmark using MCS [3]. 

 

2. Methods and Results 

 

2.1 Subcycle 

 

It is well known that the MC fission source sites have 

positive inter-cycle correlation which leads to 

underestimation of variance [1]. To reduce the 

correlation, MCS employs the subcycle method, the 

idea of subcycle identical to the batch method [2]. We 

accumulate the tallies at L subcycles as shown in the 

following equation 
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where Qi,l is the tally quantity at subcycle l of cycle i, 

and Qi is the tally quantity of cycle i which is sum of Qi,l.  

 

2.2 Underestimation of Variance 

 

The underestimation effect due to inter-cycle 

correlation of fission source, and the effect of subcycle 

are studied with BEAVRS [4] benchmark quarter core 

geometry at hot zero power state as shown in Fig. 1.  

Two cases of simulations were performed by 

employing different numbers of subcycles: 

Case 1: 300 inactive cycles/600 active cycles/1 

subcycle/10,000 histories per subcycle 

Case 2: 5 inactive cycles/20 active cycles/300 

subcycles/10,000 histories per subcycle.  

The core radially-integrated axial flux distribution 

was tallied for 20 equally-divided meshes in active core 

region. To estimate the real and apparent standard 

deviation, 50 independent simulations were performed 

for each case. 

  

 
Fig. 1. BEAVRS Benchmark configuration. 

 

Fig. 2. shows the underestimation ratio of axial flux 

distribution. The standard deviation is underestimated 

maximumly 10 times comparing to the real standard 

deviation due to inter-cycle correlation for typical MC 

simulation which employs 1 subcycle. On the other 

hands, the underestimation ratio with 300 subcycles is 

almost one for every mesh. 

  

 
Fig. 2 Underestimation ratio of axial flux distribution. 

 

2.3 Multi-Physics Feedbacks 

 

Fig. 3 presents the calculation flow of MCS when 

feedbacks are used. As shown in the figure, MCS 

performs the feedbacks at the end of every transport 

cycle. Thermal/hydraulics feedback by using closed 

channel TH solver TH1D [5] and equilibrium xenon 

feedback are selectively used in this paper, and the 
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temperature dependent cross-sections are treated by on-

the-fly interpolation [6] and multipole method [7].  

 

 
Fig. 3. Calculation flow of MCS. 

 

2.4 Overestimation of Variance 

 

The cell-wise feedback is adopted on BEAVRS 

benchmark quarter core at hot full power states. There 

are 20 axial cells per fuel pin, in total 254,760 fuel cells 

in the quarter core. Four simulations were performed 

with various combinations of feedback options:  

Case 1: No feedback. 

Case 2: thermal/hydraulics. 

Case 3: Equilibrium xenon. 

Case 4: thermal/hydraulics + equilibrium xenon. 

 

All four cases ran with 5 inactive cycles, 20 active 

cycles, 300 subcycle, and 10,000 histories per subcycle, 

and 50 independent simulations were performed to 

estimate the real and apparent standard deviations.  

 

 Fig. 4 shows the axial flux distribution of four cases 

averaged from 50 simulations. As shown in the figure, 

the power distribution is flattened when feedbacks are 

used. The overestimation ratios are presented in Fig. 5. 

The effect of thermal/hydraulics feedback or 

equilibrium xenon feedback alone seems not huge. 

However, the overestimation ratio is noticeably large 

when two feedbacks are employed together. The 

significantly large overestimation is due to the small real 

standard deviation as shown in Figs. 6-7. When two 

feedbacks are used together, the real standard deviation 

is twice smaller than the other cases while all cases 

show similar apparent standard deviation.  

 

 
Fig. 4. Axial flux distribution. 

 

 
Fig. 5. Overestimation ratio of axial flux. 

 

 
Fig. 6. Apparent standard deviation of axial flux. 
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Fig. 7. Real standard deviation of axial flux. 

 

In addition to the above observation, auto-correlation 

coefficients (ACCs) are estimated for case 4. To 

estimate the ACCs more faithfully, an additional 

simulation was performed with 4 inactive cycles, 5,000 

active cycles, 300 subcycles and 10,000 histories per 

subcycle. Fig 8 presents the auto-correlation coefficients 

of axial flux at the 5th mesh from bottom which presents 

the highest overestimation ratio as shown in Fig. 5. The 

magnitude of lag-1 ACC is about -0.6, and it rapidly 

decreases as lag increase. The negative correlation can 

be explained with Doppler feedback and xenon density. 

The cells have higher power at cycle i than cycle i-1 will 

have higher temperature and higher xenon density. 

Since the higher temperature and higher xenon density 

are both negative feedbacks to the neutron population, 

the power at cycle i+1 will be lower. In the same way, 

the power at cycle i+2 will be higher again and it will 

be repeated. Therefore, there is oscillation of ACCs 

around zero as shown in the figure. 

 

 
Fig. 8. Auto-correlation coefficient of axial flux at 5th mesh. 

 

 

 

 

 

 

 

3. Conclusions 

 

The variance overestimation phenomenon was newly 

observed in Monte Carlo multi-physics simulation with 

cycle feedback algorithm. The overestimation ratio of 

axial flux distribution was calculated on BEAVRS 

benchmark for various combinations of the 

thermal/hydraulics feedback and equilibrium xenon 

feedback. The results showed that either 

thermal/hydraulics feedback or equilibrium feedback 

can lead to the overestimation of variance and two 

feedbacks together have a synergy effect that leads to 

larger variance overestimation. In the end, the inter-

cycle correlation was estimated in terms of auto-

correlation coefficients. It was shown that the 

correlation is strongly negative with lag-1, slightly 

positive with lag-2, and then decreases in magnitude and 

oscillates around. The strong negative correlation with 

lag-1 explains the phenomena of variance 

overestimation observed. 
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