Review of the Aerosol Mass Tracking Method in the ISFRA Fission Product Transport Module for SFR Accident Analyses

Churl Yoon\*(cyoon@kaeri.re.kr) and Seok Hun Kang

**Korea Atomic Energy Research Institute** 

**Purpose and Ultimate Goal** 

Purposes : To review and understand the aerosol mass tracking method of the ISFRA fission product transport analysis module

Ultimate Goal : Improvement of the ISFRA aerosol models by modifying the existing FAI aerosol correlations

**ISFRA Aerosol Fission Product Model** 

**ISFRA(Integrated Sodium Fast <u>Reactor Analysis</u>**) Program:



**Aerosol Mass Tracking Method (Epstein, 1988)** 

- Aerosol Dynamic Equation:

- Best-Estimate computer code to simulate the consequences of accidents and BDBA transients in the PGSFR design.
- **Developed for the period** from 2014. 8. to 2017. 9. by FAI co., under the contract with KAERI.

Fig. PGSFR Schematic Diagram

## **Aerosol Mass Tracking Method:**

- 'Self-preserving form' of size spectrum assumed: As time increase, the particle size distribution becomes independent of the initial distribution of sizes.
- Complete aerosol size distribution is not solved.  $\rightarrow$  Total suspended (+deposited) mass is tracked.
- Adapted in MAAP, APRIL, and SIRIUS codes as well as ISFRA.



Total Aerosol Mass Variation:

 $\left|\frac{dm(t)}{dm(t)}\right| = -\lambda(t)m(t) + \dot{m}_p$ where  $m(t) = \rho \int_0^\infty v n(v,t) dv$ 

| $\frac{1}{2(t)} - \frac{\int_0^\infty v n(v,t) u(v) dv}{1}$ |
|-------------------------------------------------------------|
| $h \int_0^\infty v n(v,t) dv$                               |
| $\dot{m}_p(t) = \rho \int_0^\infty v \dot{n}_p(v,t) dv$     |

### • By Similarity Analyses,



| Table. ISERA FF Grouping |                                       |
|--------------------------|---------------------------------------|
| Group                    | Fission Products                      |
| 1                        | Noble gases (Xe, Kr)                  |
| 2                        | lodine (I <sub>2</sub> )              |
| 3                        | Sodium Iodide (Nal)                   |
| 4                        | Tellurium (Te <sub>2</sub> )          |
| 5                        | Alkali metals (Cs, Rb)                |
| 6                        | Sodium (Na)                           |
| 7                        | Refractory materials (Ru, Mo, Rh, Tc) |
| 8                        | Barium (Ba)                           |
| 9                        | Strontium (Sr)                        |
| 10                       | Lanthanides (La, Pr, Nd, Sm, Y,)      |

ICED & ED Craunina

Cerium group (Ce, Np, Pu, U)

## **Scaling Coefficients for Macroscopic Aerosol Properties**



#### **Nomenclature:**

- effective height for aerosol deposition [m]
- **Boltzmann constant**
- $K(v, \tilde{v})$  kernel representing the frequency of binary collisions between particles of volume v and v
- normalized Brownian collision coefficient (= 4kT/(3µ)) K
- total mass concentration of the suspended aerosols m [kg/m<sup>3</sup>]
- aerosol mass production rate [kg/m<sup>3</sup>/s] m
- dimensionless total suspended aerosol mass M
- dimensionless source rate M
- particle size distribution function [m<sup>-3</sup>] n
- source rate of particles [m<sup>-3</sup>s<sup>-1</sup>]

dimensionless particle distribution function **Ν**(ν,τ)

# **Confirmation of Aerosol** Similitude

**Aerosol Similitude:** Two different aerosols display essentially similar behavior. **Similar Behavior:** After the initial conditions are forgotten, aerosol particle size spectrum approaches a self-preserving form.



**Simulation Method: MAEROS runs (Using** sectional method) for  $\Box$  and  $\bigcirc$  aerosols.



# **ISFRA Aerosol Mass Reduction** Correlations

, etc.



Fig. Dimensionless aerosol removal rate constant for sedimentation as a function of dimensionless suspended mass concentration

For steady-state condition:

- particle volume [m<sup>3</sup>]
- time [s]
- carrier gas temperature [K]
- particle deposition or removal velocity [m/s] U
- density correction factor [-] α
- particle settling shape factor [-]
- $\varepsilon$ (v,  $\tilde{v}$ ) capture coefficient [-]
- collision shape factor [-]
- aerosol removal rate constant [s<sup>-1</sup>] λ
- dimensionless decay constant Λ
- viscosity of the carrier gas [kg/m/s] μ
- density of the aerosol material [kg/m<sup>3</sup>] ρ
- dimensionless time τ
- dimensionless particle volume





For decaying condition:



Superscript 'SS': Steady-state, 'D': Decaying, & Subscript 'SED': Sedimentation.

KNS Spring Meeting, Jeju, May 23-24, 2019

