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1. Introduction

A large number of coated fuel particles (CFPs) are
contained in a fuel element of a high temperature
reactor (HTR). The integrity of CFPs greatly affects the
characteristics of the fission product migration in a fuel
element. It should be evaluated how various mechanical
and chemical hazards deteriorate the integrity of the
CFPs during the operation of an HTR.

The CFP usually consists of a fuel kernel in its
innermost center and four surrounding coating layers
such as a low-density pyrocarbon called buffer, an inner
high-density pyrocarbon (IPyC), a silicon carbide (SiC),
and an outer high-density pyrocarbon (OPyC) from its
inside part. The sizes and material properties of the CFP
components are statistically variable. Those statistical
variations must be considered when doing a
performance analysis on a batch of CFPs.

This study describes how to generate random CFPs
for a fuel performance analysis, and shows an example
of the random particle calculations.

2. Random Particle Generation

The CFP quantities with normal distribution are the
diameter of a kernel, the thickness and density of a
buffer, the thicknesses, densities, and bacon anisotropy
factors (BAFs) of coating layers. The CFP quantities
with Weibull distribution are the strengths of coating
layers. They are stochastically independent of each
other. They can be generated using uniform deviates
whose range is from 0 to 1, where uniform deviates are
just random numbers that come from a uniform
distribution.

2.1. Generating normal deviates from uniform deviates
Two independent standard normal distribution

deviates are produced from two independent uniform
distribution deviates using the Box-Muller method [1]:
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where R? = (2x; — 1)2 + (2x, — 1)?, y = the standard
normal distribution deviate € (-oo, o), and x = the
uniform distribution deviate € (0, 1). A usual random
number generator (RNG) produces x; and Xz.

The CFP quantities with normal distribution can be
calculated using a standard normal distribution deviate

y:

t=t+y-STD,, (3)
where t and STD, = the mean value and standard
deviation of t, respectively, that are experimentally
given.

2.2. Generating Weibull deviates from uniform deviates

The random variable y with a probability distribution
f(y) is related to the uniform random variable x on (0,

1) by the fundamental transformation law of
probabilities [2]:

dx
fm=g. (4)

where f = the probability density function of y. Solving
Eq. (4) gives the random variables x and y:

x=F@) =["_f(2)dz, )

y=F1(x), (6)

where F = the cumulative distribution function of y, and
F! = the inverse function of F. The random variable y is
expressed by Eq. (7) if it is in a Weibull distribution of
Table I [3]:

y = M-in(1 - F)I'/™. (7

A usual RNG produces F on (0, 1).

The probability distribution for the strength of a CFP
coating layer is defined by a Weibull distribution. Table
11 shows the strength distributions according to the scale
parameter of a Weibull distribution. Fig. 1 shows the
variation of random Weibull strength deviate over
uniform deviate.

Table I: A standard Weibull distribution
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where f = the probability density function,
F = the cumulative distribution function,
y = the Weibull distributed random variable,
m = the shape parameter (> 0),
A = the scale parameter (> 0),
Ymean = the mean value of y,
Ymed = the median value of y,
Vy = the variance of y,
I' = the gamma function.
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Fig. 1. Random Weibull strength deviate (case 1: A =
Smea/(IN2)Y™, case 2: A = Smean/T'(1+1/m))

2.3. Generating uniform deviates

The uniform deviates are generated using a RNG.
Some useful RNGs were developed in Ref. [2]. The
authors of the reference recommend that you use ran2 if
you are going to generate more than 100,000,000
random numbers in a single calculation. The ran2 has
much longer period. It is initialized using a negative
integer seed number, and it produces a different random
number every time it receives a different seed number.

In a failure analysis on a batch of CFPs of an HTR,
the number of ran2 calls is the number of CFPs
multiplied by the total number of the stochastic
quantities of a CFP. Because of the large number of
RNG calls, it is highly recommend to use a parallel
computing to perform the failure analysis. In an MPI
parallel computing using a block distribution [4], the
generation of random particles is appropriately
distributed to the processors involved. The seed number
in the calculation part of each processor can be -
1000x(myrank+1), where myrank is a rank that is a
processor identification number between zero and the
number of processors involved minus one. The random
numbers thus generated are all statistically independent
of each other.

3. Random Particle Calculation
It is assumed in this example calculation of random

particles that the total number of particles is ten, and
only the thickness and strength of a coating layer are

statistically variable. Table 1Il lists the statistical
thicknesses and strengths of the coating layers of a CFP.
Table 1V lists ten random particles calculated. The
thicknesses of a CFP coating layer are statistically
independent of each other and the strengths are the
same.

Table I1I: An example of CFP stochastic variables

. . Strength
Thickness (zm
Coating layers (pm) - Sea (MPa)
IPyC 40+0.04 9.5 350
SiC 35+0.035 6 770
OPyC 40+0.04 9.5 350
Table IV: Calculated ten random CFPs.
No Thickness (xm) Strength (MPa)
IPyC SiC | OPyC | IPyC SiC OPyC
1 40.094 | 35.012 | 39.890 | 331.858 | 925.776 | 386.294
2 39.528 | 34.387 | 40.053 | 277.155 | 921.432 | 319.319
3 39.893 | 35.376 | 39.911 | 347.581 | 724.465 | 398.108
4 30.885 | 35.088 | 39.317 | 244.809 | 738.773 | 368.401
5 39.278 | 34.875 | 39.861 | 384.857 | 603.836 | 198.999
6 40.234 | 34.774 | 40.622 | 375.566 | 902.519 | 335.816
7 39.618 | 35.275 | 40.508 | 331.89 | 597.887 | 272.041
8 39.559 | 35.259 | 39.745 | 351.084 | 808.441 | 198.516
9 40.641 | 34.900 | 40.062 | 353.203 | 955.375 | 342.118
10 | 40.282 | 35.494 | 40.661 | 283.092 | 651.206 | 363.768
4. Summary

A method generating random CFPs has been
developed that use only a random number generator
during a fuel performance analysis. The method
produces statistical properties of a batch of CFPs using
a uniform random number produced by a usual random
number generator. The method is utilized in a statistical
fuel performance analysis on a batch of CFPs.
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Table Il: Weibull distribution for the strength of a CFP coating layer
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s = the strength (MPa), Smed = the median strength (MPa) > 0, Smean = the mean strength (MPa) > 0, m = the shape parameter > 0,
f = the Weibull probability density function of s, F = the Weibull cumulative distribution function of s, Vs = the variance of s
(MPa)? > 0, T = the gamma function.
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