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1. Introduction 
 
A large number of coated fuel particles (CFPs) are 

contained in a fuel element of a high temperature 
reactor (HTR). The integrity of CFPs greatly affects the 
characteristics of the fission product migration in a fuel 
element. It should be evaluated how various mechanical 
and chemical hazards deteriorate the integrity of the 
CFPs during the operation of an HTR. 

The CFP usually consists of a fuel kernel in its 
innermost center and four surrounding coating layers 
such as a low-density pyrocarbon called buffer, an inner 
high-density pyrocarbon (IPyC), a silicon carbide (SiC), 
and an outer high-density pyrocarbon (OPyC) from its 
inside part. The sizes and material properties of the CFP 
components are statistically variable. Those statistical 
variations must be considered when doing a 
performance analysis on a batch of CFPs. 

This study describes how to generate random CFPs 
for a fuel performance analysis, and shows an example 
of the random particle calculations.  

 
2. Random Particle Generation 

 
The CFP quantities with normal distribution are the 

diameter of a kernel, the thickness and density of a 
buffer, the thicknesses, densities, and bacon anisotropy 
factors (BAFs) of coating layers. The CFP quantities 
with Weibull distribution are the strengths of coating 
layers. They are stochastically independent of each 
other. They can be generated using uniform deviates 
whose range is from 0 to 1, where uniform deviates are 
just random numbers that come from a uniform 
distribution. 

 
2.1. Generating normal deviates from uniform deviates 

 
Two independent standard normal distribution 

deviates are produced from two independent uniform 
distribution deviates using the Box-Muller method [1]: 
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where 𝑅𝑅2 = (2𝑥𝑥1 − 1)2 + (2𝑥𝑥2 − 1)2, y = the standard 
normal distribution deviate ∈ (-∞, ∞), and x = the 
uniform distribution deviate ∈ (0, 1). A usual random 
number generator (RNG) produces x1 and x2.  

The CFP quantities with normal distribution can be 
calculated using a standard normal distribution deviate 
y: 

 
𝑡𝑡 = 𝑡𝑡̅ + 𝑦𝑦 ∙ 𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡  ,     (3) 
 

where 𝑡𝑡̅  and 𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡  = the mean value and standard 
deviation of t, respectively, that are experimentally 
given. 

 
2.2. Generating Weibull deviates from uniform deviates 

 
The random variable y with a probability distribution 

𝑓𝑓(𝑦𝑦) is related to the uniform random variable x on (0, 
1) by the fundamental transformation law of 
probabilities [2]:  

 
𝑓𝑓(𝑦𝑦) = 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
 ,      (4) 

 
where f = the probability density function of y. Solving 
Eq. (4) gives the random variables x and y: 

 
𝑥𝑥 = 𝐹𝐹(𝑦𝑦) = ∫ 𝑓𝑓(𝑧𝑧)𝑑𝑑𝑧𝑧𝑑𝑑

−∞  ,    (5) 
 
y = 𝐹𝐹−1(𝑥𝑥) ,      (6) 
 

where F = the cumulative distribution function of y, and 
F-1 = the inverse function of F. The random variable y is 
expressed by Eq. (7) if it is in a Weibull distribution of 
Table I [3]: 

 
y = λ[−𝑙𝑙𝑙𝑙(1 − 𝐹𝐹)]1/𝑚𝑚.    (7) 
 

A usual RNG produces F on (0, 1).  
The probability distribution for the strength of a CFP 

coating layer is defined by a Weibull distribution. Table 
II shows the strength distributions according to the scale 
parameter of a Weibull distribution. Fig. 1 shows the 
variation of random Weibull strength deviate over 
uniform deviate. 

 
Table I: A standard Weibull distribution 

𝑓𝑓(𝑦𝑦) = �
𝑚𝑚
𝜆𝜆𝑚𝑚
𝑦𝑦𝑚𝑚−1𝑒𝑒−(𝑑𝑑 𝜆𝜆⁄ )𝑚𝑚 , 𝑦𝑦 ≥ 0

0 , 𝑦𝑦 < 0 
 , 

𝐹𝐹(𝑦𝑦) = �1 − 𝑒𝑒−(𝑑𝑑 𝜆𝜆⁄ )𝑚𝑚 , 𝑦𝑦 ≥ 0
0 , 𝑦𝑦 < 0 

  

𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜆𝜆Γ(1 + 1 𝑚𝑚⁄ )  
𝑦𝑦𝑚𝑚𝑚𝑚𝑑𝑑 = 𝜆𝜆(𝑙𝑙𝑙𝑙2)1 𝑚𝑚⁄   
𝑉𝑉𝑑𝑑 = 𝜆𝜆2{Γ(1 + 2/𝑚𝑚) − [Γ(1 + 1/𝑚𝑚)]2}  
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where f = the probability density function, 
           F = the cumulative distribution function, 
           y = the Weibull distributed random variable, 
           m = the shape parameter (> 0), 
           𝜆𝜆 = the scale parameter (> 0),  
           ymean = the mean value of y, 
           ymed = the median value of y, 
           Vy = the variance of y, 
           Γ = the gamma function. 

 

 
Fig. 1. Random Weibull strength deviate (case 1: λ = 
smed/(ln2)1/m, case 2: λ = smean/Γ(1+1/m)) 

 
2.3. Generating uniform deviates  

 
The uniform deviates are generated using a RNG. 

Some useful RNGs were developed in Ref. [2]. The 
authors of the reference recommend that you use ran2 if 
you are going to generate more than 100,000,000 
random numbers in a single calculation. The ran2 has 
much longer period. It is initialized using a negative 
integer seed number, and it produces a different random 
number every time it receives a different seed number.  

In a failure analysis on a batch of CFPs of an HTR, 
the number of ran2 calls is the number of CFPs 
multiplied by the total number of the stochastic 
quantities of a CFP. Because of the large number of 
RNG calls, it is highly recommend to use a parallel 
computing to perform the failure analysis. In an MPI 
parallel computing using a block distribution [4], the 
generation of random particles is appropriately 
distributed to the processors involved. The seed number 
in the calculation part of each processor can be -
1000×(myrank+1), where myrank is a rank that is a 
processor identification number between zero and the 
number of processors involved minus one. The random 
numbers thus generated are all statistically independent 
of each other. 

 
3. Random Particle Calculation 

 
It is assumed in this example calculation of random 

particles that the total number of particles is ten, and 
only the thickness and strength of a coating layer are 

statistically variable. Table III lists the statistical 
thicknesses and strengths of the coating layers of a CFP. 
Table IV lists ten random particles calculated. The 
thicknesses of a CFP coating layer are statistically 
independent of each other and the strengths are the 
same. 

 
Table III: An example of CFP stochastic variables 

Coating layers Thickness (μm) Strength 
m smed (MPa) 

IPyC 40±0.04 9.5 350 
SiC 35±0.035 6 770 
OPyC 40±0.04 9.5 350 

 
Table IV: Calculated ten random CFPs. 

No Thickness (μm) Strength (MPa) 
IPyC SiC OPyC IPyC SiC OPyC 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

40.094 
39.528 
39.893 
39.885 
39.278 
40.234 
39.618 
39.559 
40.641 
40.282 

35.012 
34.387 
35.376 
35.088 
34.875 
34.774 
35.275 
35.259 
34.900 
35.494 

39.890 
40.053 
39.911 
39.317 
39.861 
40.622 
40.508 
39.745 
40.062 
40.661 

331.858 
277.155 
347.581 
244.809 
384.857 
375.566 
331.89 

351.084 
353.203 
283.092 

925.776 
921.432 
724.465 
738.773 
603.836 
902.519 
597.887 
808.441 
955.375 
651.206 

386.294 
319.319 
398.108 
368.401 
198.999 
335.816 
272.041 
198.516 
342.118 
363.768 

 
4. Summary 

 
A method generating random CFPs has been 

developed that use only a random number generator 
during a fuel performance analysis. The method 
produces statistical properties of a batch of CFPs using 
a uniform random number produced by a usual random 
number generator. The method is utilized in a statistical 
fuel performance analysis on a batch of CFPs. 
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Table II: Weibull distribution for the strength of a CFP coating layer 
Scale parameter λ 

𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚
(𝑙𝑙𝑚𝑚2)1/𝑚𝑚  𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

Γ(1+1 𝑚𝑚⁄ )  

f(s) �
𝑚𝑚 𝑙𝑙𝑚𝑚2
𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚

� 𝑠𝑠
𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚

�
𝑚𝑚−1

𝑒𝑒−𝑙𝑙𝑚𝑚2 (𝑠𝑠 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚⁄ )𝑚𝑚 , 𝑠𝑠 ≥ 0
0 , 𝑠𝑠 < 0

  �
𝑚𝑚[Γ(1+1 𝑚𝑚⁄ )]𝑚𝑚

𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
� 𝑠𝑠
𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

�
𝑚𝑚−1

𝑒𝑒−[Γ(1+1 𝑚𝑚⁄ )]𝑚𝑚(𝑠𝑠 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚⁄ )𝑚𝑚 , 𝑠𝑠 ≥ 0
0 , 𝑠𝑠 < 0

  

F(s) �1 − 𝑒𝑒−𝑙𝑙𝑚𝑚2 (𝑠𝑠 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚⁄ )𝑚𝑚 , 𝑠𝑠 ≥ 0
0 , 𝑠𝑠 < 0

  �1 − 𝑒𝑒−[Γ(1+1 𝑚𝑚⁄ )]𝑚𝑚(𝑠𝑠 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚⁄ )𝑚𝑚 , 𝑠𝑠 ≥ 0
0 , 𝑠𝑠 < 0

  

smean or smed 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚
(𝑙𝑙𝑚𝑚2)1/𝑚𝑚 Γ(1 + 1/𝑚𝑚)  𝑠𝑠𝑚𝑚𝑚𝑚𝑑𝑑 = 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (𝑙𝑙𝑙𝑙2)1 𝑚𝑚⁄ Γ(1 + 1/𝑚𝑚)⁄   

Vs 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚
2

(𝑙𝑙𝑚𝑚2)2/𝑚𝑚 {Γ(1 + 2/𝑚𝑚) − [Γ(1 + 1/𝑚𝑚)]2}   𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
2

[Γ(1+1 𝑚𝑚⁄ )]2
{Γ(1 + 2/𝑚𝑚) − [Γ(1 + 1/𝑚𝑚)]2}  

s 𝑠𝑠𝑚𝑚𝑚𝑚𝑑𝑑 �−
𝑙𝑙𝑚𝑚(1−𝐹𝐹)
𝑙𝑙𝑚𝑚2

�
1/𝑚𝑚

  𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 �−
𝑙𝑙𝑚𝑚(1−𝐹𝐹)

[Γ(1+1 𝑚𝑚⁄ )]𝑚𝑚�
1/𝑚𝑚

  
s = the strength (MPa), smed = the median strength (MPa) > 0, smean = the mean strength (MPa) > 0, m = the shape parameter > 0, 
f = the Weibull probability density function of s, F = the Weibull cumulative distribution function of s, Vs = the variance of s 
(MPa)2 > 0, Γ = the gamma function. 
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