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{ Objectives J

* The quantity called fractional release (FR) (or release fraction) is used as a measure
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quantifying the fission product (FP) release in many high temperature reactor (HTR)

T~ Fuel Kernel

fuel performance analysis code.

* This study describes the mathematical expressions of the FP releases from an HTR fuel element, and the
analytical forms of FRs for the radioactive and stable isotopes diffusing out of a spherical particle.

[ Fractional Release Formulae J

Radioactive fission product Stable fission product
C = concentration (atoms/m®), B = volumetric birth rate (atoms/(m?®s)), A = decay constant (s%), D = diffusion coefficient (m?/s), r = radial coordinate (m), t = time (s). C = concentration (atoms/m?), B = volumetric birth rate (atoms/(m?® s)), A = decay constant (s%), D = diffusion coefficient (m?/s), r = radial coordinate (m), t = time (s).
z =0 for a slab, 1 for a cylinder, 2 for a sphere, J = mass current, (atoms/(m?s)), € = initial concentration (atoms/m%), C, = fV CdV =amount in a volume (atoms), z = 0 for a slab, 1 for a cylinder, 2 for a sphere, J = mass current, (atoms/(m? s)), €® = initial concentration (atoms/m3), C, = fv CdV =amount in a volume (atoms),
Ry = release rate (atoms/s), B, = fV BdVv = birth rate (atoms/s), V = volume (m®%), Ry = amount released (atoms), By = amount generated (atoms), Ry = release rate (atoms/s), B, = fV Bav = birth rate (atoms/s), V = volume (m®), Rv = amount released (atoms), Bv = amount generated (atoms),
As = surface area (m?), u = 2a?/D, t(t) = fnt [D(r,x)/a*]dx, a = radial coordinate of the outermost location (m), Fiﬁi)= fractional release at the end of irradiation. As = surface area (m?), u = 2a®/D, ©(t) = fnt [D(r,x)/a*]dx, a = radial coordinate of the outermost location (m), Pgﬁi): fractional release at the end of irradiation.
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[ Calculation Results and Summary J

 The mathematical fractional releases were
classified systematically for radioactive and
stable isotopes diffusing out of a fuel element
under irradiation and accident conditions.

FR and its rate in a UO, kernel during irradiation

* Only when the diffusing medium is a single
layer, it Is possible to get an analytical form of
fractional release. In other cases, the fractional
releases must be calculated numerically.

Fractiomsl release

Trradiation tme (day) Irradiation time (dav)

* The choice of either the fractional release or
the fractional release rate depends on whether
the amount generated or the birth rate on
which they are based on is more easily
identifiable.

FR and its rate in a UO, kernel during heating
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Fractional release

* According to the fractional releases calculated,
the radioactive isotopes '19mAg, 137Cs, 85Kr and .
0Sr release from a spherical UO, kernel more g @ w o ww M
In that order. The strontium release is
negligible.
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