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1. Introduction 

 
As computer specs have improved, 3-D core 

depletion computation speed has improved greatly, but 

it is still not enough to calculate a lot of loading patterns 

for optimization. In the past, there have been studies to 

improve this calculation speed using OLL(Optimization 

layer by layer), one of the artificial neural networks. As 

in the previous study, the purpose of this study is to 

construct an artificial neural network that predicts the 2-

D power distribution. 

In the previous study, if they looked at the fuel 

assembly one by one when analyzed loading pattern, we 

regarded loading pattern as a single image and looked at 

the relationship with the surrounding fuel assembly 

more importantly. Reflecting on this point, this research 

attempts to improve the speed and accuracy by 

converting the main neural network into CNN based on 

past research. In addition, burnup depletion was 

performed using an artificial neural network. 

 

2. Review of previous works 

 

2.1 Abstract 

 

The optimization layer by layer (OLL) learning 

algorithm is applied (Fig. 1). To predict assembly-wise 

power and burnup distribution, the critical soluble boron 

concentration, and the pin power peaking factor (PPPF) 

with core burnup in the PWR using K-infinity and 

Macro XSs. The OLL trained neural networks can 

compute core depletion characteristics about 40 times 

faster than the modern nodal method code. [1] 

 

 
Fig. 1. Three-layer OLL network for prediction of 

normalized FA power 

 

2.2 Improvement 

 

In the previous research, it was applied to the 

optimization tool by using OLL networks, but the 

optimization method did not change, and it was not 

performed in this paper. The first improvement is that 

the main neural network is changed Convolutional 

Neural Network (CNN) from OLL. The input type is 

also changed. Instead of using a combination of K-

infinity and specific macroscopic cross-sections, we use 

5 types of the macro cross-section (fast/thermal nu-

fission XS, fast/thermal absorption XS, fast to thermal 

scattering XS) that are used to calculate criticality. The 

notable improvement except for changing the artificial 

neural network is predicting the power distribution over 

the entire cycle as the only BOC macroscopic cross-

section rather than predicting the power distribution by 

using the macro cross section for each burnup steps. 

And the other one is a reflector and moderator area is 

included for analyzing periphery area assembly power. 

 

3. Method 

 

3.1 Deep Learning Models 

 

Deep learning is a class of machine learning 

algorithms that: [2] 

 

- use a cascade of multiple layers of nonlinear 

processing units for feature extraction and 

transformation. Each successive layer uses the 

output from the previous layer as input. 

- learn in supervised (e.g., classification) and/or 

unsupervised (e.g., pattern analysis) manners. 

- learn multiple levels of representations that 

correspond to different levels of abstraction; the 

levels form a hierarchy of concepts. 

 

3.1.1 Supervised learning 

 

Supervised learning is the machine learning task of 

learning a function that maps an input to an output 

based on example input-output pairs.[3] It infers a 

function from labeled training data consisting of a set of 

training examples.[4] In supervised learning, each 

example is a pair consisting of an input object (typically 

a vector) and the desired output value (also called the 

supervisory signal). A supervised learning algorithm 

analyzes the training data and produces an inferred 
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function, which can be used for mapping new examples. 

An optimal scenario will allow for the algorithm to 

correctly determine the class labels for unseen instances. 

This requires the learning algorithm to generalize from 

the training data to unseen situations in a "reasonable" 

way. 

 

3.2 Convolution Neural Network 

 

A convolutional neural network consists of an input 

and an output layer, as well as multiple hidden layers. 

The hidden layers of a CNN typically consist of 

convolutional layers, RELU layer i.e. activation 

function, pooling layers, fully connected layers, and 

normalization layers. [5] 

Description of the process as a convolution in neural 

networks is by convention. Mathematically it is a cross-

correlation rather than a convolution (although cross-

correlation is a related operation). This only has 

significance for the indices in the matrix, and thus which 

weights are placed at which index. Convolutional layers 

apply a convolution operation to the input, passing the 

result to the next layer. The convolution emulates the 

response of an individual neuron to visual stimuli. [6] 

Each convolutional neuron processes data only for its 

receptive field. Although fully connected feedforward 

neural networks can be used to learn features as well as 

classify data, it is not practical to apply this architecture 

to images. A very high number of neurons would be 

necessary, even in a shallow (opposite of deep) 

architecture, due to the very large input sizes associated 

with images, where each pixel is a relevant variable. For 

instance, a fully connected layer for a (small) image of 

size 100 x 100 has 10000 weights for each neuron in the 

second layer. The convolution operation brings a 

solution to this problem as it reduces the number of free 

parameters, allowing the network to be deeper with 

fewer parameters. [7] For instance, regardless of image 

size, tiling regions of size 5 x 5, each with the same 

shared weights, requires only 25 learnable parameters. 

 

3.3 Residual Neural Network 

 

A residual neural network is an artificial neural 

network (ANN) of a kind that builds on constructs 

known from pyramidal cells in the cerebral cortex. 

Residual neural networks do this by utilizing skip 

connections or short-cuts to jump over some layers. [8] 

One motivation for skipping overlayers is to avoid the 

problem of vanishing gradients by reusing activations 

from a previous layer until the layer next to the current 

one learns its weights. During training, the weights 

adapt to mute the previous layer and amplify the layer 

next to the current. In the simplest case, only the 

weights for the connection to the next to the current 

layer is adapted, with no explicit weights for the 

upstream previous layer. This usually works properly 

when a single non-linear layer is stepped over, or when 

the intermediate layers are all linear. If not, then an 

explicit weight matrix should be learned for the skipped 

connection. Skipping initially compresses the network 

into fewer layers, which speeds learning. The network 

gradually restores the skipped layers as it learns 

the feature space. During later learning, when all layers 

are expanded, it stays closer to the manifold and thus 

learns faster. A neural network without residual parts 

explores more of the feature space. This makes it more 

vulnerable to perturbations that cause it to leave the 

manifold and necessitates extra training data to recover. 

 

3.4 Architecture 

 

The design of convolutional neural networks (CNN) 

with shortcut-connection which was utilized for the 

problem is shown in Fig. 2.  

 

 
Fig. 2. Convolution neural network architecture with 

shortcut -connection for power distribution prediction 

 

The 5 types of the macro cross-section are 

fast/thermal nu-fission XS, fast/thermal absorption XS, 

fast to thermal scattering XS. The macroscopic XSs 

used as input are taken from the lattice code calculation 

(KARMA) which is mainly used for commercial core 

analysis. It is node-wise (1/4 assembly node), not an 

assembly-wise. Five macro XS of each layer is 

represented as binary images of 34 × 34 (the complete 

input shape is [34×34×5]). A first convolution (CONV1) 

is performed using a 1×1 filter, same padding, ReLU 

activation function and 64 channels (the output shape is 

[34×34×64]). The second convolution (CONV2) has the 

same properties of (CONV1) except for the size of 

filter—growing now to 3×3 filter (shape of [34×34×64]). 

The third convolution (CONV3) has the same properties 

of (CONV1) except for the number of channels—

growing now to 256 (shape of [34×34×256]). There is 

shortcut-connection that only passed CONV3 (shape of 

[34×34×256]). After adding two convolution layers, it is 

divided into 24 burnup step(i=1∼24). The fourth 

convolution (CONV4) is performed using a 2×2 filter, 

2×2 strides, same padding, ReLU activation function 

and 128 channels (the output shape is [17×17×128]). 

The fifth convolution (CONV5) is performed using a 

1×1 filter, ReLU activation function and 1 channel (the 

output shape is [15×15×1]). After the fifth convolution, 

quadrant average values are generated using symmetry.  

https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Pyramidal_cell
https://en.wikipedia.org/wiki/Pyramidal_cell
https://en.wikipedia.org/wiki/Cerebral_cortex
https://en.wikipedia.org/wiki/Cerebral_cortex
https://en.wikipedia.org/wiki/Vanishing_gradient_problem
https://en.wikipedia.org/wiki/Vanishing_gradient_problem
https://en.wikipedia.org/wiki/Feature_(machine_learning)
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the resulting data (of shape [8×8×1]) is flattened to a 

single vector (of [64] elements). 

The training outputs are taken from the 3-D core 

calculation (ASTRA). We utilized the assembly-wise 

power distributions at 24 core burnup steps (0, 50, 150, 

500, 1000 to 20000 increased by 1000, MWD/MTU). 

The 2-D power distributions are quadrant symmetric 

values. It also includes the moderator area with zero-

power. The reason for including it is that the area with 

zero-power also has spatial significance when 

estimating the distribution. A 3 × 3 filter is applied. This 

is because, when calculating the power distribution of 

the specific fuel assembly, it is most important what fuel 

assemblies come around. The larger the filter size, the 

closer it is to fully connected neural network, which 

results in unnecessary weight production and longer 

learning time. Normally, when analyzing images with 

CNN, the information is compressed and downsized. 

However, in the case of analyzing the loading pattern, 

the size was not reduced because the importance of the 

information was all the same for each location. 

 

4.Result 

 

4.1 Loading Pattern Random Generation 

 

The core was decided by OPR1000 (177 fuel 

assemblies) for this supervised learning. The Feed 

Assembly uses gadolinia as a burnable absorption rod. 

Four different types of burnable absorbers differing in 

the number and position were randomly selected for 

each location. In addition, the following are assumed: 

 
- Based on Low Leakage Loading Pattern  

- Random shuffle without periphery location 

- No. of Feed assembly is fixed (69 Feed) 

- Octant Symmetry 

 

9158 loading patterns were produced using the 

assumed conditions and 3-D core calculation code 

(ASTRA).  

 

4.2 Supervised Learning 

 

4.2.1 Optimized Layer by Layer (OLL) vs. Convolution 

Neural Network (CNN) 

 

Using the 9158 loading patterns (8700 were used as 

actual learning data, and 458 were used for validation), 

we compared the OLL method and the CNN method. In 

order to compare only the differences according to the 

network, the number of parameters used in the network 

is made equal. In the case of OLL, k-inf and two macro 

cross-sections are used as in the previous study, and in 

CNN, five macro cross-sections are used as described 

above. The mean squared error is set to loss and learned 

to minimize it. The learning time is the same as the one 

hour, and at the completion of the learning, the loss can 

confirm that CNN is lower than OLL. 

 
Fig. 3. Loss according to Learning time about OLL vs. CNN 

for BOC only 

 

The predicted results for the 458 validation loading 

patterns are shown in the following table. There is no 

significant difference in the mean error, but the 

maximum error is almost twice the difference. If we 

calculate the fraction of the assemblies with over than 

specific absolute error, we can see that CNN accurately 

predicts the assembly-wise power distribution rather 

than OLL. 

 
Table I: Power distribution prediction error of OLL and CNN 

 
Network 

Type 

eavg
a emax

b Frac. with ec 

> 3% 

Frac. With ec 

> 5% 

OLL 1.05 11.92 4.8 0.4 

CNN 0.44 4.23 0.0 0.0 

a= average absolute error (%) 

b= maximum absolute error (%) 

c= Fraction of the assemblies with absolute error 

(%, based on 13282 assemblies) 

 

4.2.2 Convolution Neural Network for the whole cycle 

 

9158 loading patterns and architecture (Fig. 2) are 

used. The mean squared error is also set to the loss. The 

loss according to the time is as follows. It takes about 

two minutes to learn once (epoch). It learned about 700 

times to reach the desired loss. 

 

 
Fig. 4. Loss according to Learning time about CNN for the 

whole cycle 
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The graph (Fig. 4) shows enough learning, and the 

maximum errors by each location of 458 loading 

patterns for validation are as follows.  

 
Table II: Power distribution prediction error of CNN for the 

whole cycle 

 
 eavg

a emax
b Frac. with ec > 1% 

CNN for 

whole cycle 
0.13 1.69 0.005 

a= average absolute error (%) 

b= maximum absolute error (%) 

c= Fraction of the assemblies with absolute error 

(%, based on 596544 assemblies) 

 

As a result of the validation, it was confirmed that the 

assembly with the absolute error exceeding 1% is 

0.005% of the total assembly and that it is in good 

agreement with the 3-D core calculation. 

 

4.3 Verification 

 

Three loading patterns are selected for verification. 

The first is the optimized loading pattern (equilibrium 

cycle) that used to a recent cycle of OPR1000 and meets 

the assumed conditions, the second is that add feed 

assembly inside, and last is that increased neutron 

leakages by loading feed assembly at the 

periphery(outermost) location. The Computation time 

for each loading pattern is about 0.2 second in 

CPU(Intel i7-3770 3.40GHz, DDR3 16GB) and 0.05 

second in GPU(NVIDIA GeForce GTX 1080 Ti 11GB). 

The results using the learned convolution neural 

network are as follows. 

 
Table III: Power distribution prediction error of three 

verification models 

 
eavg

a emax
b 

Frac. with ec  

> 3% 

Frac. With ec 

> 5% 

CNN for the whole cycle 

Eq. 0.38 3.81 0.7 0.0 

73Feed 1.30 2.80 0.0 0.0 

73Feed 

+ H.L.d 
2.38 22.23 17.9 10.6 

CNN for BOC only 

Eq. 0.48 1.96 - - 

73Feed 0.62 2.43 - - 

73Feed 

+ H.L.d 
3.27 17.35 - - 

OLL for BOC only 

Eq. 1.00 2.60 - - 

73Feed 0.83 2.62 - - 

73Feed 

+ H.L.d 
24.35 69.14 - - 

a= Average absolute error (%) 

b= Maximum absolute error (%) 

c= Fraction of the assemblies with absolute error 

(%, based on 1248 assemblies) 

d= High neutron leakage rather than assumed condition 
 

For the first model, the mean and maximum errors 

were larger than the validation model but well predicted. 

The error of the model which added feed assembly 

inside also increased, but CNN predicts the power 

distribution using the relation between the assemblies, 

considering that the absolute error exceeding 3% does 

not occur. As with the third model that we have not seen 

the learning loading patterns, so we found that a large 

error occurs at periphery location. But, compared to 

OLL data, this also demonstrates that CNN predicts the 

power distribution using the relationships including a 

reflector and moderator area. 

 

5. Conclusions 

 

Convolutional Neural Networks were applied to 

predict the assembly-wise power distribution of the 

whole cycle, and accurate values were obtained in a 

very short time (less than 0.2 seconds by one loading 

pattern). It is expected that the assembly-wise maximum 

pin power distribution, critical boron concentration, and 

cycle length can be predicted using the same CNN 

module. This neural network module was developed to 

provide convenience to those who design the loading 

pattern. It is to acquire fast and precise data of required 

design information without 3-D core calculation. In 

order to improve this, it is necessary to perform 

reinforcement learning and to develop a module that 

creates a loading pattern that is equivalent to the actual 

design with different amounts of feed assembly and 

neutron leakage. 
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