
Transactions of the Korean Nuclear Society Spring Meeting

Jeju, Korea, May 23-24, 2019

Convolutional Neural Network for Power Distribution Prediction in PWRs

Lee Jinyoung a, Nam Younduk a, Joo Han Gyu b

aKEPCO NF, 242, 989 beon-gil, Daedeokdae-ro, Yuseong-gu, Daejeon, Republic of Korea
bSeoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744, Korea

Corresponding author: jinyounglee@knfc.co.kr

1. Introduction

As computer specs have improved, 3-D core

depletion computation speed has improved greatly, but

it is still not enough to calculate a lot of loading patterns

for optimization. In the past, there have been studies to

improve this calculation speed using OLL(Optimization

layer by layer), one of the artificial neural networks. As

in the previous study, the purpose of this study is to

construct an artificial neural network that predicts the 2-

D power distribution.

In the previous study, if they looked at the fuel

assembly one by one when analyzed loading pattern, we

regarded loading pattern as a single image and looked at

the relationship with the surrounding fuel assembly

more importantly. Reflecting on this point, this research

attempts to improve the speed and accuracy by

converting the main neural network into CNN based on

past research. In addition, burnup depletion was

performed using an artificial neural network.

2. Review of previous works

2.1 Abstract

The optimization layer by layer (OLL) learning

algorithm is applied (Fig. 1). To predict assembly-wise

power and burnup distribution, the critical soluble boron

concentration, and the pin power peaking factor (PPPF)

with core burnup in the PWR using K-infinity and

Macro XSs. The OLL trained neural networks can

compute core depletion characteristics about 40 times

faster than the modern nodal method code. [1]

Fig. 1. Three-layer OLL network for prediction of

normalized FA power

2.2 Improvement

In the previous research, it was applied to the

optimization tool by using OLL networks, but the

optimization method did not change, and it was not

performed in this paper. The first improvement is that

the main neural network is changed Convolutional

Neural Network (CNN) from OLL. The input type is

also changed. Instead of using a combination of K-

infinity and specific macroscopic cross-sections, we use

5 types of the macro cross-section (fast/thermal nu-

fission XS, fast/thermal absorption XS, fast to thermal

scattering XS) that are used to calculate criticality. The

notable improvement except for changing the artificial

neural network is predicting the power distribution over

the entire cycle as the only BOC macroscopic cross-

section rather than predicting the power distribution by

using the macro cross section for each burnup steps.

And the other one is a reflector and moderator area is

included for analyzing periphery area assembly power.

3. Method

3.1 Deep Learning Models

Deep learning is a class of machine learning

algorithms that: [2]

- use a cascade of multiple layers of nonlinear

processing units for feature extraction and

transformation. Each successive layer uses the

output from the previous layer as input.

- learn in supervised (e.g., classification) and/or

unsupervised (e.g., pattern analysis) manners.

- learn multiple levels of representations that

correspond to different levels of abstraction; the

levels form a hierarchy of concepts.

3.1.1 Supervised learning

Supervised learning is the machine learning task of

learning a function that maps an input to an output

based on example input-output pairs.[3] It infers a

function from labeled training data consisting of a set of

training examples.[4] In supervised learning, each

example is a pair consisting of an input object (typically

a vector) and the desired output value (also called the

supervisory signal). A supervised learning algorithm

analyzes the training data and produces an inferred

Transactions of the Korean Nuclear Society Spring Meeting

Jeju, Korea, May 23-24, 2019

function, which can be used for mapping new examples.

An optimal scenario will allow for the algorithm to

correctly determine the class labels for unseen instances.

This requires the learning algorithm to generalize from

the training data to unseen situations in a "reasonable"

way.

3.2 Convolution Neural Network

A convolutional neural network consists of an input

and an output layer, as well as multiple hidden layers.

The hidden layers of a CNN typically consist of

convolutional layers, RELU layer i.e. activation

function, pooling layers, fully connected layers, and

normalization layers. [5]

Description of the process as a convolution in neural

networks is by convention. Mathematically it is a cross-

correlation rather than a convolution (although cross-

correlation is a related operation). This only has

significance for the indices in the matrix, and thus which

weights are placed at which index. Convolutional layers

apply a convolution operation to the input, passing the

result to the next layer. The convolution emulates the

response of an individual neuron to visual stimuli. [6]

Each convolutional neuron processes data only for its

receptive field. Although fully connected feedforward

neural networks can be used to learn features as well as

classify data, it is not practical to apply this architecture

to images. A very high number of neurons would be

necessary, even in a shallow (opposite of deep)

architecture, due to the very large input sizes associated

with images, where each pixel is a relevant variable. For

instance, a fully connected layer for a (small) image of

size 100 x 100 has 10000 weights for each neuron in the

second layer. The convolution operation brings a

solution to this problem as it reduces the number of free

parameters, allowing the network to be deeper with

fewer parameters. [7] For instance, regardless of image

size, tiling regions of size 5 x 5, each with the same

shared weights, requires only 25 learnable parameters.

3.3 Residual Neural Network

A residual neural network is an artificial neural

network (ANN) of a kind that builds on constructs

known from pyramidal cells in the cerebral cortex.

Residual neural networks do this by utilizing skip

connections or short-cuts to jump over some layers. [8]

One motivation for skipping overlayers is to avoid the

problem of vanishing gradients by reusing activations

from a previous layer until the layer next to the current

one learns its weights. During training, the weights

adapt to mute the previous layer and amplify the layer

next to the current. In the simplest case, only the

weights for the connection to the next to the current

layer is adapted, with no explicit weights for the

upstream previous layer. This usually works properly

when a single non-linear layer is stepped over, or when

the intermediate layers are all linear. If not, then an

explicit weight matrix should be learned for the skipped

connection. Skipping initially compresses the network

into fewer layers, which speeds learning. The network

gradually restores the skipped layers as it learns

the feature space. During later learning, when all layers

are expanded, it stays closer to the manifold and thus

learns faster. A neural network without residual parts

explores more of the feature space. This makes it more

vulnerable to perturbations that cause it to leave the

manifold and necessitates extra training data to recover.

3.4 Architecture

The design of convolutional neural networks (CNN)

with shortcut-connection which was utilized for the

problem is shown in Fig. 2.

Fig. 2. Convolution neural network architecture with

shortcut -connection for power distribution prediction

The 5 types of the macro cross-section are

fast/thermal nu-fission XS, fast/thermal absorption XS,

fast to thermal scattering XS. The macroscopic XSs

used as input are taken from the lattice code calculation

(KARMA) which is mainly used for commercial core

analysis. It is node-wise (1/4 assembly node), not an

assembly-wise. Five macro XS of each layer is

represented as binary images of 34 × 34 (the complete

input shape is [34×34×5]). A first convolution (CONV1)

is performed using a 1×1 filter, same padding, ReLU

activation function and 64 channels (the output shape is

[34×34×64]). The second convolution (CONV2) has the

same properties of (CONV1) except for the size of

filter—growing now to 3×3 filter (shape of [34×34×64]).

The third convolution (CONV3) has the same properties

of (CONV1) except for the number of channels—

growing now to 256 (shape of [34×34×256]). There is

shortcut-connection that only passed CONV3 (shape of

[34×34×256]). After adding two convolution layers, it is

divided into 24 burnup step(i=1∼24). The fourth

convolution (CONV4) is performed using a 2×2 filter,

2×2 strides, same padding, ReLU activation function

and 128 channels (the output shape is [17×17×128]).

The fifth convolution (CONV5) is performed using a

1×1 filter, ReLU activation function and 1 channel (the

output shape is [15×15×1]). After the fifth convolution,

quadrant average values are generated using symmetry.

https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Pyramidal_cell
https://en.wikipedia.org/wiki/Pyramidal_cell
https://en.wikipedia.org/wiki/Cerebral_cortex
https://en.wikipedia.org/wiki/Cerebral_cortex
https://en.wikipedia.org/wiki/Vanishing_gradient_problem
https://en.wikipedia.org/wiki/Vanishing_gradient_problem
https://en.wikipedia.org/wiki/Feature_(machine_learning)
https://en.wikipedia.org/wiki/Feature_(machine_learning)

Transactions of the Korean Nuclear Society Spring Meeting

Jeju, Korea, May 23-24, 2019

the resulting data (of shape [8×8×1]) is flattened to a

single vector (of [64] elements).

The training outputs are taken from the 3-D core

calculation (ASTRA). We utilized the assembly-wise

power distributions at 24 core burnup steps (0, 50, 150,

500, 1000 to 20000 increased by 1000, MWD/MTU).

The 2-D power distributions are quadrant symmetric

values. It also includes the moderator area with zero-

power. The reason for including it is that the area with

zero-power also has spatial significance when

estimating the distribution. A 3 × 3 filter is applied. This

is because, when calculating the power distribution of

the specific fuel assembly, it is most important what fuel

assemblies come around. The larger the filter size, the

closer it is to fully connected neural network, which

results in unnecessary weight production and longer

learning time. Normally, when analyzing images with

CNN, the information is compressed and downsized.

However, in the case of analyzing the loading pattern,

the size was not reduced because the importance of the

information was all the same for each location.

4.Result

4.1 Loading Pattern Random Generation

The core was decided by OPR1000 (177 fuel

assemblies) for this supervised learning. The Feed

Assembly uses gadolinia as a burnable absorption rod.

Four different types of burnable absorbers differing in

the number and position were randomly selected for

each location. In addition, the following are assumed:

- Based on Low Leakage Loading Pattern

- Random shuffle without periphery location

- No. of Feed assembly is fixed (69 Feed)

- Octant Symmetry

9158 loading patterns were produced using the

assumed conditions and 3-D core calculation code

(ASTRA).

4.2 Supervised Learning

4.2.1 Optimized Layer by Layer (OLL) vs. Convolution

Neural Network (CNN)

Using the 9158 loading patterns (8700 were used as

actual learning data, and 458 were used for validation),

we compared the OLL method and the CNN method. In

order to compare only the differences according to the

network, the number of parameters used in the network

is made equal. In the case of OLL, k-inf and two macro

cross-sections are used as in the previous study, and in

CNN, five macro cross-sections are used as described

above. The mean squared error is set to loss and learned

to minimize it. The learning time is the same as the one

hour, and at the completion of the learning, the loss can

confirm that CNN is lower than OLL.

Fig. 3. Loss according to Learning time about OLL vs. CNN

for BOC only

The predicted results for the 458 validation loading

patterns are shown in the following table. There is no

significant difference in the mean error, but the

maximum error is almost twice the difference. If we

calculate the fraction of the assemblies with over than

specific absolute error, we can see that CNN accurately

predicts the assembly-wise power distribution rather

than OLL.

Table I: Power distribution prediction error of OLL and CNN

Network

Type

eavg
a emax

b Frac. with ec

> 3%

Frac. With ec

> 5%

OLL 1.05 11.92 4.8 0.4

CNN 0.44 4.23 0.0 0.0

a= average absolute error (%)

b= maximum absolute error (%)

c= Fraction of the assemblies with absolute error

(%, based on 13282 assemblies)

4.2.2 Convolution Neural Network for the whole cycle

9158 loading patterns and architecture (Fig. 2) are

used. The mean squared error is also set to the loss. The

loss according to the time is as follows. It takes about

two minutes to learn once (epoch). It learned about 700

times to reach the desired loss.

Fig. 4. Loss according to Learning time about CNN for the

whole cycle

Transactions of the Korean Nuclear Society Spring Meeting

Jeju, Korea, May 23-24, 2019

The graph (Fig. 4) shows enough learning, and the

maximum errors by each location of 458 loading

patterns for validation are as follows.

Table II: Power distribution prediction error of CNN for the

whole cycle

 eavg

a emax
b Frac. with ec > 1%

CNN for

whole cycle
0.13 1.69 0.005

a= average absolute error (%)

b= maximum absolute error (%)

c= Fraction of the assemblies with absolute error

(%, based on 596544 assemblies)

As a result of the validation, it was confirmed that the

assembly with the absolute error exceeding 1% is

0.005% of the total assembly and that it is in good

agreement with the 3-D core calculation.

4.3 Verification

Three loading patterns are selected for verification.

The first is the optimized loading pattern (equilibrium

cycle) that used to a recent cycle of OPR1000 and meets

the assumed conditions, the second is that add feed

assembly inside, and last is that increased neutron

leakages by loading feed assembly at the

periphery(outermost) location. The Computation time

for each loading pattern is about 0.2 second in

CPU(Intel i7-3770 3.40GHz, DDR3 16GB) and 0.05

second in GPU(NVIDIA GeForce GTX 1080 Ti 11GB).

The results using the learned convolution neural

network are as follows.

Table III: Power distribution prediction error of three

verification models

eavg

a emax
b

Frac. with ec

> 3%

Frac. With ec

> 5%

CNN for the whole cycle

Eq. 0.38 3.81 0.7 0.0

73Feed 1.30 2.80 0.0 0.0

73Feed

+ H.L.d
2.38 22.23 17.9 10.6

CNN for BOC only

Eq. 0.48 1.96 - -

73Feed 0.62 2.43 - -

73Feed

+ H.L.d
3.27 17.35 - -

OLL for BOC only

Eq. 1.00 2.60 - -

73Feed 0.83 2.62 - -

73Feed

+ H.L.d
24.35 69.14 - -

a= Average absolute error (%)

b= Maximum absolute error (%)

c= Fraction of the assemblies with absolute error

(%, based on 1248 assemblies)

d= High neutron leakage rather than assumed condition

For the first model, the mean and maximum errors

were larger than the validation model but well predicted.

The error of the model which added feed assembly

inside also increased, but CNN predicts the power

distribution using the relation between the assemblies,

considering that the absolute error exceeding 3% does

not occur. As with the third model that we have not seen

the learning loading patterns, so we found that a large

error occurs at periphery location. But, compared to

OLL data, this also demonstrates that CNN predicts the

power distribution using the relationships including a

reflector and moderator area.

5. Conclusions

Convolutional Neural Networks were applied to

predict the assembly-wise power distribution of the

whole cycle, and accurate values were obtained in a

very short time (less than 0.2 seconds by one loading

pattern). It is expected that the assembly-wise maximum

pin power distribution, critical boron concentration, and

cycle length can be predicted using the same CNN

module. This neural network module was developed to

provide convenience to those who design the loading

pattern. It is to acquire fast and precise data of required

design information without 3-D core calculation. In

order to improve this, it is necessary to perform

reinforcement learning and to develop a module that

creates a loading pattern that is equivalent to the actual

design with different amounts of feed assembly and

neutron leakage.

REFERENCES

[1] C. S. Jang, H. J. Shim, C. H. Kim, Optimization layer by

layer networks for in-core fuel management optimization

computations in PWRs, Annals of Nuclear Energy Volume 28,

Issue 11, July 2001, Pages 1115-1132

[2] Deng, L., Yu, D., Deep Learning: Methods and

Applications, Foundations and Trends in Signal Processing,

2014, pages 1-199.

[3] Stuart J. Russell, Peter Norvig, Artificial Intelligence: A

Modern Approach, Third Edition, Prentice Hall, 2010.

[4] Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar

Foundations of Machine Learning, The MIT Press, 2012.

[5] "CS231n Convolutional Neural Networks for Visual

Recognition", cs231n.github.io, Retrieved December 13, 2018.

[6] "Convolutional Neural Networks (LeNet) – DeepLearning

0.1 documentation". Theano Development Team, Retrieved

August 31, 2013.

[7] Hamed Habibi Aghdam, Elnaz Jahani Heravi, “Guide to

convolutional neural networks: a practical application to

traffic-sign detection and classification”, Springer, May 2017.

[8] He Kaiming, Zhang Xiangyu, Ren Shaoqing, Sun Jian,

"Deep Residual Learning for Image Recognition", December

2015.

