
Convolutional Neural Network for BOC 3D Pin Power Prediction

Younduk Nama, Jin Young Leea, Hyung Jin Shimb

a. KEPCO Nuclear Fuel Co., #242, Deadeok-daero, 989beon-gil, Yuseong-gu, Deajeon, 305-353, Korea

b. Seoul National University, Department of Nuclear Engineering, San 56-1, Shilim-Dong, Gwanak-Ku, Seoul, 151-742

South Korea

*Corresponding author: ydnam@knfc.co.kr

1. Introduction

A state-of-the-art nodal diffusion theory code is accurate

and computationally fast enough for pressurized water

reactor (PWR) core analysis. However, its computational

cost is still a burden for the core loading pattern (LP)

optimization which requires over than 10,000 different LP

analyses. [1] For a super-fast reactor core analysis, artificial

neural networks (ANN) models have been tried for the LP

optimizations. [2] [3] Although these ANNs show promising

validation-set results, it shows large error in the test-set

results. Therefore, we made a better ANN architecture for

more generalized BOC 3D pin power peaking factor (PPPF)

prediction which utilizes the power of convolutional neural

network (CNN).

2. Review of previous works

The history of nuclear power plant simulation has been

solving transport and/or diffusion equation. Researchers must

decide between computational accuracy and time. Even with

the advances in computational resources, transport

calculations are too computationally and costly for whole 3D

core calculation. Therefore, the most widely used code

system for 3D core calculation is a nodal diffusion theory

code which is a combination of transport and diffusion

calculations. However, the system is still too computationally

expansive for LP optimization. Therefore, there is a need for

a model that is fast with certain accuracy. We will introduce

an CNN architecture that best predicts PPPF results of a nodal

diffusion theory code.

3. Method

Modern PWRs are efficiently designed in terms of

economy and safety. Therefore, every structure is simplified

in the engineering sense. For example, the arrangements of

fuel assemblies in a core are designed into a lattice shape.

Because of these characteristics, it is conveniently spatially

discreditable. Therefore, a CNN architecture is optimal for

this problem. [4]

We have designed our architecture for OPR1000 Type

plant. Although it is possible to make an architecture for all

Korean Plant Types, (OPR1000 and APR1400) testing only

on one plant type is a reasonable scope of this paper. Rest of

the assumptions are in the 4.1 Data Generation section.

Before introduce our architecture, we have to define

follow keywords:

- Optimization of Architecture: problem specific

optimization such as spatial or time series data

- Optimization of Learning: solving problems within ANN

and/or CNN such as vanishing gradient and/or overfitting

The finalized architecture is summarized in Figure 1.

- XS INPUT: 3D 4th quadrant node-wise XS Input

- CONV15a: identity filter for a node-wise relationship [5]

- BN1234b: batchnorm for vanishing gradients (VG) [4]

- CONV2-4a: convolutional filter for a spatial relationship[7]

- SE1b: Squeeze and Excitation for feature importance [8]

- SHORTCUT b: skip connection for VG [5]

- DECONV123 a: convolutional filter for pin power dist.

- PIN INPUT a: pin power from FFL file (Form Function)

- CONV6 a: convolutional for pin power

- MAX PIN OUTPUT a: 3D pin power output

a Optimization of Architecture

b Optimization of Learning

The architecture in Figure 1 looks very similar to

residual neural network that is found in image recognition.

[5] Since all of the Optimization of Learning layers in ResNet

are proven in the residual neural network paper, we will not

go over in this paper. Instead we will go over the differences

in each layer and the reasons for each newly introduced layer.

For easier understanding of the ANN, layers are like

functions and blocks are like modules or classes in

Figure 2. SymNet Layout
Figure 1 SymNet and PinNet Summary Layout

programming. Therefore, the entire ANN model acts like a

program.

3.1 XS INPUT: Block

Like most ANN architectures, defining the input is the

most important part of the Optimization of Architecture

process. Therefore, we carefully choose our input as a

building block of core simulation: initial node-wise

macroscopic cross sections (XS) which are divided by the

assembly discontinuity factors (ADF). The input shape of 2D

node-wise full core XSs should be 34x34x5. It is 34x34 nodes

because there are radially 15 assemblies with 2 reflectors on

both sides. In order to save some memory and computational

time, we took advantage of the core design: rotational

symmetry. By simply taking 4th quadrant of full core and

applying rotational padding, we can essentially make

quadrant core into a full core. Therefore, our final quadrant

input shape is 17x17x5.

For 3D calculation, we need to take account of axial

nodes. Conventionally, the axial part of an assembly is

divided into 26+2 nodes. Since they are not equally spaced,

we need to recalibrate the axial nodes into equally spaces

nodes. Upon testing several methods, three points (1/4, 2/4,

3/4) axial nodes worked the best. Finally, the 3D quadrant

node-wise XS input shape is 3x17x17x5.

3.2 SYMMETRY NEURAL NETWORK (SymNet): Block

Our architecture called Symmetry Network (SymNet) is

a combination of three networks, ResNet, Inception-v3, and

SE Network. [5][7][8] The summary of the SymNet is as

shown in Figure 2.

There are two main differences between ResNet to

SymNet. First, our input is rotationally symmetric. Therefore,

we need ROTPADDING1 layers to trick the neural network

to think that it is looking at the full core. Second, spatial

dimensions must be preserved going from one layer to

another. Often in the image recognition problem, pooling

layers are introduced to make spatial information into the

feature information. Because of this it is invariant to the

rotation and translations. [4] However, we value the rotation

and translation of all the assemblies. Therefore, we took out

all the pooling layers from our network. Each relevant layer

is explained in detail in the following sections.

3.2.1 CONV234: Layer

CONV234 layer is presented to find a spatial relationship

between surrounding assemblies. Instead of 3x3 layer in

ResNet, our convolutional layers have two 1x3 and 3x1

layers like Inception-v3, because it shows showed that it is

better to implement two instead of one 3x3 layer because it

produces a deeper network. [7]

The general knowledge is that it is efficient to build a

deeper model with skipping connections. For example, two

3x3 layers are better than one 5x5 layer. Since at the end of

our architecture, we need to see the full core (34x34), we need

to stack at least 17 3x3 layers (2x17+1). Therefore, we

stacked little more layers because it does not hurt the learning

(20 stack). [5] The final output shape of CONV234 is

3x17x17x64.

3.2.2 ROTPADDING1: Layer

ROTPADDING1 layer is needed for quadrant inputs.

Because our input only has 4th quadrant, the rotational

symmetry padding must be applied to the beginning of each

CONV234 layers. As shown in Figure 3, we apply rotational

symmetry by copying white nodes 0, 1, 2 to corresponding

gray nodes. The output shape of this padding is 3x19x19x64.

After CONV234 layer the dimension goes back to

3x17x17x64. Therefore, we are not expending the

dimensions.

3.3 PinNet: Block

PinNet block is necessary for pin peaking factor such as

Fr (Radial Peaking Factor, 2D) and Fxy (Planar Peaking

Factor, 3D like). In a two-step system, this process is called

pin power reconstruction. From the calculated pin power

distribution, the form function (FF) is simply multiplied to

predict core wise pin power distribution. The form function

is pin power distribution that was prepared during assembly-

wise cross section generation. The following layers are

essential layers for PinNet.

3.3.1 DECONV123: Layer

DECONV123 layers first expand the dimensions from

quadrant nodes (17x17) to quadrant pins (128x128). We

perform deconvolution to keep the spatial relationships. The

deconvolution also known as convolution-transpose is a

widely used concept for dimensional expansion. We use

1x3x3x64 filters with 2 padding with a stride of 2. The output

shape from this layer is 3x128x128x64.

3.3.2 Pin Input: Layer

Figure 3. Rotationally symmetric padding, left is node wise

numbering of center and 2D axial nodes and right is how it is

copied to the padding.

Pin Input layer is in the shape of 1x128x128x1. From the

assembly-wise burnup distribution, FF is looked up from FFL

file from a two-step code system. This input is simply

multiplied to the DECONV123 output values. Final output

shape will be 3x128x128x64.

3.3.3 CONV6: Layer

CONV6 layer is there to find the final assembly-wise

PPPF. It is possible to simply perform the max pooling, but

for the stable learning, we just replace it with convolution

layer with a 3x16x16x1 filter. Final output shape from this

layer is 8x8x1 which is the assembly-wise PPPF. Finally, the

output is compared to Max Pin Output.

3.4 Max Pin Output: Block

Our interest is the maximum value of 3D pin power

distribution. Therefore, there were two possible candidates

for our output shapes: 1x1x1 global PPPF or 8x8x1 assembly-

wise PPPF. In order to predict 1x1x1 global maximum PPPF,

we can make a fully connected network at the end. However,

it is better to look at all 8x8x1 assemblies and train on them

because it is essentially training on 64 more different cases of

1x1x1 global PPPFs. The model will be more generalized and

be accurate. Therefore, our final output shape is 8x8x1

instead of 1x1x1.

4. Result

4.1 Data Generation

In order to verify the validity of the architecture, the target

core is selected as the Korean Standard Nuclear Power Plant

(OPR1000 Type) with 177 fuel assemblies. The feed

assembly uses gadolinia as a burnable poison material. Four

different types of burnable absorbers differing in the number

and position were randomly positioned. The follows are

assumed.

- Base on Low Leakage Loading Pattern

- Random Shuffle excluding the periphery locations

- No. of feed assembly is fixed (69 feeds) including center

assembly

- Octant Symmetry

 9158 loading patterns were produced using the assumed

conditions and 3d core calculation code. Finally, for the test

data we have prepared LPs that are generated differently from

the trained and validation data. The 800 test LPs are

generated so that it is closer to equilibrium LPs.

The computer resources for this test is as follows.

 -CPU: Ryzen 1700 Processor.

 -GPU: NVIDIA 1060.

4.2 Architecture Validation

In order to test the final architecture, we compare four

architectures: with or without 3D XS input and FF input. As

shown in Table 1, it is not possible to predict accurate PPPF

with only 2D XS input. The averaged absolute error for PD

is 0.3%. When we validated the Fr and Fxy on the same

network, the absolute averaged error was around 1.8% and

3.1%, respectively. Since this is only BOC PPPF, the error

can be greater if we expand this to full cycle depletion.

Therefore, we need better architecture and inputs for Fr and

Fxy.

The reference is 2D XS without FF. By adding just 3D

XS, error was almost 1/2 from the reference. However, by

doing so, the computational time and memory usage was

almost doubled or even tripled from the reference. By adding

just FF to the reference, the error was 1/3 from the reference.

Finally, by adding both 3D XS and FF, the error was 1/3 from

the reference. Therefore, we concluded that FF with 2D is the

best choice for our applications. Since this was the validation

phase, we need to verify the 2D XS with FF architecture with

the test data in the following section.

Table 1 mean square error for PD Fr Fxy prediction

 2D XSa 3D XSa 2D XSa

+FFb

3D XSa

+FFb

PD 2 0.5 - -

Fr 12 7 4 4

Fxy 61 12 7 6

a 2D or 3D XS input were used

b Form Function is used

*all values are divided by 1E-5

4. 3 Architecture Verification

The final architecture was verified with 800 test data.

The most promising architectures are 2D XS + FF and 3D XS

+ FF. We validated the model (trained NN architecture) with

800 non-trained LPs but still within the distribution trained

data. (Average Fxy 2.224, validation-set) Then we tested the

model with 800 non-trained LPs that are not within the

distribution of the trained data. (Average Fxy 1.599, test-set)

All absolute percent errors in Table 2 are calculated with the

following equations.

𝑒 = abs(max(𝑝𝑝𝑟𝑒) − max⁡(𝑝𝑟𝑒𝑎𝑙))/max⁡(𝑝𝑟𝑒𝑎𝑙)) ∗ 100

where

𝑝𝑝𝑟𝑒 = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑⁡𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦⁡𝑤𝑖𝑠𝑒⁡𝑃𝑃𝑃𝐹

𝑝𝑟𝑒𝑎𝑙 = 𝑅𝑒𝑎𝑙⁡𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦⁡𝑤𝑖𝑠𝑒⁡𝑃𝑃𝑃𝐹

The reason why we consider only the maximum power

from all assemblies is because only global PPPF is used in

the core design. The rest of the assembly PPPF data are only

for training as we mentioned in Max Pin Output Section.

As we can see from Table 2, when looking at the

averaged absolute percent error, 3D shows better

performance over 2D counterparts. However, when looking

at the maximum absolute percent error, 2D shows better

performance. This is more prominent on the test-set. We are

currently not sure why this happening, but it is maybe from

overfitting to our 3D data. The axial node spacing methods

as described in Input Block Section must be checked in the

later paper. However, both implementations are promising.

The computational time for 2D XS input and 3D XS

input with FFs are respectively took around 0.025 and 0.040

seconds with the single GPU and respectively took around

0.055 and 0.161 seconds with the single CPU. Considering

the computational time and the accuracy, 2D XS input with

FF input is the best choice for our problem.

Table 2 validation and test for Fxy prediction

 erravg
a errstd

b errmax
c

OLL*

2D validation-set 1.60 - 11.26

SymNet, PinNet

2D validation-set 0.223 0.179 0.978

3D validation-set 0.204 0.165 1.011

2D test-set 1.104 0.991 4.240

3D test-set 0.700 0.660 7.463

* OLL uses validation-set for testing (same distribution) [2]

 a=average absolute percent error (%)

 b=standard deviation of absolute percent error (%)

 c=maximum absolute percent error (from 800 data)

CONCLUSION

SymNet which is a variant of ResNet and PinNet were

applied to 3D PPPF prediction. From the previous

architecture, we have enhanced the capabilities of our

architecture to better predict 3D PPPF. The results show that

it can predict 3D BOC PPPF less than 1% error. Soon, we

will expand this BOC 3D PPPF to full cycle depletion 3D

PPPF. Moreover, in order to improve the performance of the

final full cycle depletion model, data collection must be

improved. Therefore, we will soon incorporate

“reinforcement learning”. Finally, we have showed that 2D

XSs and with FF architecture is computationally better in

predicting 3D BOC PPPF with little to non-compromise in

the accuracy.

REFERENCES

[1] Tong Kyu Park, Han Gyu Joo, Chang Hyo Kim, Hyun Chul

Lee, Multiobjective Loading Pattern Optimization by Simulated

Annealing Employing Discontinuous Penalty Function and

Screening Techinique , Nuclear Science and Engineering: 162,

1340147 (2009).

[2] C. S. Jang, H. J. Shim, C. H. Kim, Optimization layer by layer

networks for in-core fuel management optimization computations

in PWRs, Annals of Nuclear Energy Volume 28, Issue 11, July

2001, Pages 1115-1132

[3] Akio Yamamoto, Application of Neural Network for Loading

Pattern Screening of In-Core Optimization Calculations, Nuclear

Technology, 144:1, 63-75, DOI: 10.13182/NT03-A3429, (2003).

[4] Krizhevsky, Alex & Sutskever, Ilya & E. Hinton, Geoffrey.

(2012). ImageNet Classification with Deep Convolutional Neural

Networks. Neural Information Processing Systems. 25.

10.1145/3065386.

[5] He, Kaiming; Zhang, Xiangyu; Ren, Shaoqing; Sun, Jian

(2015-12-10). "Deep Residual Learning for Image Recognition".

arXiv:1512.03385 [cs.CV].

[6] Sergey loffe, Christian Szegedy (2015-02-11). "Batch

Normalization : Accerlerating Deep Network Training by

Reducing Internal Covariate Shift". arXiv:1502.03167 [cs.LG].

[7] Christian Szegedy, Vincent Vanhoucke, Sergey loffe, Jonathon

Shlens, Zbigniew Wojna (2015-12-02). "Rethinking the inception

Architecture for Computer Vision". arXiv:1512.00567 [cs.CV].

[8] Jie Hu, Li Shen, Samuel Albanie, Gang Sun, Enhua Wu (2017-

09-05). "Squeeze-and-Excitation Networks". arXiv:1709.01507

[cs.CV].

