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1. Introduction 

 

A state-of-the-art nodal diffusion theory code is accurate 

and computationally fast enough for pressurized water 

reactor (PWR) core analysis. However, its computational 

cost is still a burden for the core loading pattern (LP) 

optimization which requires over than 10,000 different LP 

analyses. [1] For a super-fast reactor core analysis, artificial 

neural networks (ANN) models have been tried for the LP 

optimizations. [2] [3] Although these ANNs show promising 

validation-set results, it shows large error in the test-set 

results. Therefore, we made a better ANN architecture for 

more generalized BOC 3D pin power peaking factor (PPPF) 

prediction which utilizes the power of convolutional neural 

network (CNN).  

 

2. Review of previous works 

 

The history of nuclear power plant simulation has been 

solving transport and/or diffusion equation. Researchers must 

decide between computational accuracy and time. Even with 

the advances in computational resources, transport 

calculations are too computationally and costly for whole 3D 

core calculation. Therefore, the most widely used code 

system for 3D core calculation is a nodal diffusion theory 

code which is a combination of transport and diffusion 

calculations. However, the system is still too computationally 

expansive for LP optimization. Therefore, there is a need for 

a model that is fast with certain accuracy. We will introduce 

an CNN architecture that best predicts PPPF results of a nodal 

diffusion theory code. 

 

3. Method 

 

Modern PWRs are efficiently designed in terms of 

economy and safety. Therefore, every structure is simplified 

in the engineering sense. For example, the arrangements of 

fuel assemblies in a core are designed into a lattice shape. 

Because of these characteristics, it is conveniently spatially 

discreditable.  Therefore, a CNN architecture is optimal for 

this problem. [4]  

We have designed our architecture for OPR1000 Type 

plant. Although it is possible to make an architecture for all 

Korean Plant Types, (OPR1000 and APR1400) testing only 

on one plant type is a reasonable scope of this paper. Rest of 

the assumptions are in the 4.1 Data Generation section.  

Before introduce our architecture, we have to define 

follow keywords: 

 

- Optimization of Architecture: problem specific 

optimization such as spatial or time series data 

- Optimization of Learning: solving problems within ANN 

and/or CNN such as vanishing gradient and/or overfitting 

 

The finalized architecture is summarized in Figure 1.  

 

- XS INPUT: 3D 4th quadrant node-wise XS Input  

- CONV15a: identity filter for a node-wise relationship [5] 

- BN1234b: batchnorm for vanishing gradients (VG) [4] 

- CONV2-4a: convolutional filter for a spatial relationship[7] 

- SE1b: Squeeze and Excitation for feature importance [8] 

- SHORTCUT b: skip connection for VG [5] 

- DECONV123 a: convolutional filter for pin power dist. 

- PIN INPUT a: pin power from FFL file (Form Function) 

- CONV6 a: convolutional for pin power  

- MAX PIN OUTPUT a: 3D pin power output 

a Optimization of Architecture 

b Optimization of Learning 

 

The architecture in Figure 1 looks very similar to 

residual neural network that is found in image recognition. 

[5] Since all of the Optimization of Learning layers in ResNet 

are proven in the residual neural network paper, we will not 

go over in this paper. Instead we will go over the differences 

in each layer and the reasons for each newly introduced layer. 

For easier understanding of the ANN, layers are like 

functions and blocks are like modules or classes in 

Figure 2. SymNet Layout 
Figure 1 SymNet and PinNet Summary Layout 



programming. Therefore, the entire ANN model acts like a 

program.  

 

3.1 XS INPUT: Block 

 

Like most ANN architectures, defining the input is the 

most important part of the Optimization of Architecture 

process. Therefore, we carefully choose our input as a 

building block of core simulation: initial node-wise 

macroscopic cross sections (XS) which are divided by the 

assembly discontinuity factors (ADF). The input shape of 2D 

node-wise full core XSs should be 34x34x5. It is 34x34 nodes 

because there are radially 15 assemblies with 2 reflectors on 

both sides. In order to save some memory and computational 

time, we took advantage of the core design: rotational 

symmetry. By simply taking 4th quadrant of full core and 

applying rotational padding, we can essentially make 

quadrant core into a full core. Therefore, our final quadrant 

input shape is 17x17x5. 

For 3D calculation, we need to take account of axial 

nodes. Conventionally, the axial part of an assembly is 

divided into 26+2 nodes. Since they are not equally spaced, 

we need to recalibrate the axial nodes into equally spaces 

nodes. Upon testing several methods, three points (1/4, 2/4, 

3/4) axial nodes worked the best. Finally, the 3D quadrant 

node-wise XS input shape is 3x17x17x5.  

 

3.2 SYMMETRY NEURAL NETWORK (SymNet): Block 

  

Our architecture called Symmetry Network (SymNet) is 

a combination of three networks, ResNet, Inception-v3, and 

SE Network. [5][7][8] The summary of the SymNet is as 

shown in Figure 2.  

There are two main differences between ResNet to 

SymNet. First, our input is rotationally symmetric. Therefore, 

we need ROTPADDING1 layers to trick the neural network 

to think that it is looking at the full core. Second, spatial 

dimensions must be preserved going from one layer to 

another. Often in the image recognition problem, pooling 

layers are introduced to make spatial information into the 

feature information. Because of this it is invariant to the 

rotation and translations. [4] However, we value the rotation 

and translation of all the assemblies. Therefore, we took out 

all the pooling layers from our network. Each relevant layer 

is explained in detail in the following sections.  

 

 

3.2.1 CONV234: Layer 

 

CONV234 layer is presented to find a spatial relationship 

between surrounding assemblies. Instead of 3x3 layer in 

ResNet, our convolutional layers have two 1x3 and 3x1 

layers like Inception-v3, because it shows showed that it is 

better to implement two instead of one 3x3 layer because it 

produces a deeper network. [7]  

The general knowledge is that it is efficient to build a 

deeper model with skipping connections. For example, two 

3x3 layers are better than one 5x5 layer. Since at the end of 

our architecture, we need to see the full core (34x34), we need 

to stack at least 17 3x3 layers (2x17+1).  Therefore, we 

stacked little more layers because it does not hurt the learning 

(20 stack). [5] The final output shape of CONV234 is 

3x17x17x64.  

 

3.2.2 ROTPADDING1: Layer 

 

ROTPADDING1 layer is needed for quadrant inputs. 

Because our input only has 4th quadrant, the rotational 

symmetry padding must be applied to the beginning of each 

CONV234 layers. As shown in Figure 3, we apply rotational 

symmetry by copying white nodes 0, 1, 2 to corresponding 

gray nodes. The output shape of this padding is 3x19x19x64. 

After CONV234 layer the dimension goes back to 

3x17x17x64. Therefore, we are not expending the 

dimensions. 

 

3.3 PinNet: Block  

 

PinNet block is necessary for pin peaking factor such as 

Fr (Radial Peaking Factor, 2D) and Fxy (Planar Peaking 

Factor, 3D like). In a two-step system, this process is called 

pin power reconstruction. From the calculated pin power 

distribution, the form function (FF) is simply multiplied to 

predict core wise pin power distribution. The form function 

is pin power distribution that was prepared during assembly-

wise cross section generation. The following layers are 

essential layers for PinNet. 

 

3.3.1 DECONV123: Layer 

 

DECONV123 layers first expand the dimensions from 

quadrant nodes (17x17) to quadrant pins (128x128). We 

perform deconvolution to keep the spatial relationships. The 

deconvolution also known as convolution-transpose is a 

widely used concept for dimensional expansion. We use 

1x3x3x64 filters with 2 padding with a stride of 2. The output 

shape from this layer is 3x128x128x64.  

 

3.3.2 Pin Input: Layer 

Figure 3. Rotationally symmetric padding, left is node wise 

numbering of center and 2D axial nodes and right is how it is 

copied to the padding. 



 

Pin Input layer is in the shape of 1x128x128x1. From the 

assembly-wise burnup distribution, FF is looked up from FFL 

file from a two-step code system. This input is simply 

multiplied to the DECONV123 output values. Final output 

shape will be 3x128x128x64. 

 

3.3.3 CONV6: Layer 

 

CONV6 layer is there to find the final assembly-wise 

PPPF. It is possible to simply perform the max pooling, but 

for the stable learning, we just replace it with convolution 

layer with a 3x16x16x1 filter. Final output shape from this 

layer is 8x8x1 which is the assembly-wise PPPF. Finally, the 

output is compared to Max Pin Output. 

 

3.4 Max Pin Output: Block 

 

Our interest is the maximum value of 3D pin power 

distribution. Therefore, there were two possible candidates 

for our output shapes: 1x1x1 global PPPF or 8x8x1 assembly-

wise PPPF. In order to predict 1x1x1 global maximum PPPF, 

we can make a fully connected network at the end. However, 

it is better to look at all 8x8x1 assemblies and train on them 

because it is essentially training on 64 more different cases of 

1x1x1 global PPPFs. The model will be more generalized and 

be accurate. Therefore, our final output shape is 8x8x1 

instead of 1x1x1.  

 

4. Result 

 

4.1 Data Generation 

 

In order to verify the validity of the architecture, the target 

core is selected as the Korean Standard Nuclear Power Plant 

(OPR1000 Type) with 177 fuel assemblies. The feed 

assembly uses gadolinia as a burnable poison material. Four 

different types of burnable absorbers differing in the number 

and position were randomly positioned. The follows are 

assumed. 

 

- Base on Low Leakage Loading Pattern 

- Random Shuffle excluding the periphery locations 

- No. of feed assembly is fixed (69 feeds) including center 

assembly 

- Octant Symmetry 

 

 9158 loading patterns were produced using the assumed 

conditions and 3d core calculation code. Finally, for the test 

data we have prepared LPs that are generated differently from 

the trained and validation data. The 800 test LPs are 

generated so that it is closer to equilibrium LPs. 

 

The computer resources for this test is as follows. 

 -CPU: Ryzen 1700 Processor.  

 -GPU: NVIDIA 1060.  

 

4.2 Architecture Validation 

 

In order to test the final architecture, we compare four 

architectures: with or without 3D XS input and FF input. As 

shown in Table 1, it is not possible to predict accurate PPPF 

with only 2D XS input. The averaged absolute error for PD 

is 0.3%. When we validated the Fr and Fxy on the same 

network, the absolute averaged error was around 1.8% and 

3.1%, respectively. Since this is only BOC PPPF, the error 

can be greater if we expand this to full cycle depletion. 

Therefore, we need better architecture and inputs for Fr and 

Fxy. 

The reference is 2D XS without FF. By adding just 3D 

XS, error was almost 1/2 from the reference. However, by 

doing so, the computational time and memory usage was 

almost doubled or even tripled from the reference. By adding 

just FF to the reference, the error was 1/3 from the reference. 

Finally, by adding both 3D XS and FF, the error was 1/3 from 

the reference. Therefore, we concluded that FF with 2D is the 

best choice for our applications. Since this was the validation 

phase, we need to verify the 2D XS with FF architecture with 

the test data in the following section.  

 
Table 1 mean square error for PD Fr Fxy prediction 

 2D XSa 3D XSa 2D XSa 

+FFb 

3D XSa 

+FFb 

PD 2 0.5 - - 

Fr 12 7 4 4 

Fxy 61 12 7 6 

a 2D or 3D XS input were used 

b Form Function is used 

*all values are divided by 1E-5 

 

4. 3 Architecture Verification 

 

The final architecture was verified with 800 test data. 

The most promising architectures are 2D XS + FF and 3D XS 

+ FF. We validated the model (trained NN architecture) with 

800 non-trained LPs but still within the distribution trained 

data. (Average Fxy 2.224, validation-set) Then we tested the 

model with 800 non-trained LPs that are not within the 

distribution of the trained data. (Average Fxy 1.599, test-set) 

All absolute percent errors in Table 2 are calculated with the 

following equations. 

 

𝑒 = abs(max(𝑝𝑝𝑟𝑒) − max⁡(𝑝𝑟𝑒𝑎𝑙))/max⁡(𝑝𝑟𝑒𝑎𝑙)) ∗ 100 

 

where  

 

𝑝𝑝𝑟𝑒 = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑⁡𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦⁡𝑤𝑖𝑠𝑒⁡𝑃𝑃𝑃𝐹 

𝑝𝑟𝑒𝑎𝑙 = 𝑅𝑒𝑎𝑙⁡𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦⁡𝑤𝑖𝑠𝑒⁡𝑃𝑃𝑃𝐹 

 



The reason why we consider only the maximum power 

from all assemblies is because only global PPPF is used in 

the core design. The rest of the assembly PPPF data are only 

for training as we mentioned in Max Pin Output Section.  

As we can see from Table 2, when looking at the 

averaged absolute percent error, 3D shows better 

performance over 2D counterparts. However, when looking 

at the maximum absolute percent error, 2D shows better 

performance. This is more prominent on the test-set. We are 

currently not sure why this happening, but it is maybe from 

overfitting to our 3D data. The axial node spacing methods 

as described in Input Block Section must be checked in the 

later paper. However, both implementations are promising. 

The computational time for 2D XS input and 3D XS 

input with FFs are respectively took around 0.025 and 0.040 

seconds with the single GPU and respectively took around 

0.055 and 0.161 seconds with the single CPU. Considering 

the computational time and the accuracy, 2D XS input with 

FF input is the best choice for our problem. 

 
Table 2 validation and test for Fxy prediction 

 erravg
a errstd

b errmax
c 

OLL*    

2D validation-set 1.60 - 11.26 

SymNet, PinNet    

2D validation-set 0.223 0.179 0.978 

3D validation-set 0.204 0.165 1.011 

2D test-set 1.104 0.991 4.240 

3D test-set 0.700 0.660 7.463 

* OLL uses validation-set for testing (same distribution) [2] 

 a=average absolute percent error (%)  

 b=standard deviation of absolute percent error (%) 

 c=maximum absolute percent error (from 800 data) 

 

CONCLUSION  

 

SymNet which is a variant of ResNet and PinNet were 

applied to 3D PPPF prediction. From the previous 

architecture, we have enhanced the capabilities of our 

architecture to better predict 3D PPPF. The results show that 

it can predict 3D BOC PPPF less than 1% error. Soon, we 

will expand this BOC 3D PPPF to full cycle depletion 3D 

PPPF. Moreover, in order to improve the performance of the 

final full cycle depletion model, data collection must be 

improved. Therefore, we will soon incorporate 

“reinforcement learning”. Finally, we have showed that 2D 

XSs and with FF architecture is computationally better in 

predicting 3D BOC PPPF with little to non-compromise in 

the accuracy. 
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