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1. Introduction 

 
The framework of the continuous-energy Monte 

Carlo (MC) criticality calculation with the partial 

current-based coarse-mesh finite difference (p-CMFD) 

feedback (MC/p-CMFD) have been proposed [1,2]. The 

effects of the MC/p-CMFD are 1) acceleration of the 

convergence speed in the fission source distributions 

(FSDs) and 2) real variance reduction in the local MC 

tallies by reducing the inter-cycle correlation.  

On the other hand, the estimation of the real variance 

of the sample mean has been a big challenge in the MC 

criticality calculation [3]. The conventional way to 

estimate variance from a single batch run neglects the 

inter-cycle correlation, which leads to the significant 

underestimation. To estimate the real variance, the inter-

cycle covariance of a MC tally should be considered 

[4,5]. 

Recently, the spectral analysis method which is 

widely used in covariance stationary simulation [6] is 

applied to the MC criticality calculation [7,8]. The 

discrete Fourier transformation is applied to a MC tally 

in the time domain (cycle) to estimate the spectral 

density in the frequency domain. Then, the spectral 

density at frequency zero is used to estimate the real 

variance of the sample mean, where the inter-cycle 

covariance is inherently considered. 

The problem in the spectral analysis method is that 

the periodogram at frequency zero is not a consistent 

estimator of the spectral density at frequency zero and 

also biased. Thus, the spectral density at frequency zero 

is indirectly estimated by the local average over the 

periodograms near frequency zero. Depending on the 

number of periodograms used in the local average, there 

is a trade-off between the bias and the variance of the 

real variance. 

In this paper, the spectral analysis method is applied 

to estimate the real variances of the local MC tallies in 

the MC/p-CMFD. In numerical results, it is shown that 

the p-CMFD feedback not only reduces the real 

variance itself, but also makes it possible to reduce the 

variance of the estimated real variance by the spectral 

analysis method without losing significant accuracy. 

 

2. MC Criticality Calculation with p-CMFD 

Feedback (MC/p-CMFD)  

 

In this section, the MC/p-CMFD is briefly described. 

The detailed description is given in Refs. [1,2]. When 

the reactor problem is discretized into I coarse-mesh 

cells, the MC/p-CMFD calculation at cycle l can be 

written as: 
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where ( , , )H r E r E    is the number of fission 

neutrons born at  ,r E  produced by a fission neutron 

born at  ,r E  , ( 1) ( )l

MCS r  is the FSDs being used in the 

current MC cycle, ( 1)l

if
  is the weight correction factor 

for the p-CMFD feedback, ( ) ( )l

MCS r  is the newly 

sampled FSDs from the current cycle, and ( 1)l

pCMFDk   is the 

k-eigenvalue obtained from the previous p-CMFD 

calculation. 

For each MC cycle, the p-CMFD equation is 

constructed based on the coarse-mesh MC tallies, as: 
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where ( ) ( )

, , , , and  l l

MC removal i MC production i   are the removal and 

production homogenized cross sections, respectively. 
,( ) ,( )

, ,
ˆ ˆ and l l

MC ij MC ijD D   are the outgoing and incoming partial 

current correction factors, respectively, at the coarse-

mesh cell interface j, while ( )

,

l

MC ijD  is an arbitrary 

diffusion coupling coefficient. In these notations, the 

subscript “MC” and superscript “  l ” indicates that the 

quantities are obtained from the MC cycle l 
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The solution of the p-CMFD equation, which are 

( ) ( ) ( ) ( )

,1 , and ,...,
T

l l l l

pCMFD pCMFD pCMFD pCMFD Ik        is obtained 

by the usual power iteration method. Then the weight 

correction factor for the next MC cycle is updated as: 
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where ( ) ( ) ( )

, , , ,

l l l

pCMFD i i MC production i pCMFD iS V    is the number of 

fission neutrons in coarse-mesh cell i obtained from the 

p-CMFD calculation, ( )

,

l

MC iS  is that obtained from the 

MC calculation. 

It is noted that the p-CMFD feedback accelerates the 

convergence of the FSDs during inactive cycles and 

reduces the real variance in the local MC tallies by 

reducing the inter-cycle covariances.  

 

3. Estimation of Real Variance using  

Spectral Analysis Method 

 

From a single batch run, the sample mean of the MC 

tally is expressed as: 
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where activeL  is the number of active cycles, and ( )lQ  is 

the MC tally obtained from l-th active cycle. 

Then, the real variance of the sample mean is 

expressed as: 

 

2 2 ( )

2
1

( )

2
1 1

( )

1
( )

1
 ,

1
1  ,

active

active active

active

active

L
l

real

lactive

L L
l m

l mactive

L
h

h Lactive active

Q Q
L

L

h

L L

 









 



 
  

 

 
  

 

  
    

  



 



 (5) 

 

where ( )h  is lag-covariance of 
( )lQ  and ( )l hQ   with h 

lagging cycles. As activeL  goes to infinity, 2 ( )active realL Q  

becomes ( )h

h






 . Thus, the real variance can be 

asymptotically approximated as 
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In spectral analysis, ( )h  is considered as a signal in 

the time domain, which can be decomposed into a 

number of discrete frequencies. The spectral density at 

certain frequency is expressed as: 
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where i is the imaginary number. 

The spectral density at frequency   = 0 gives 
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Then, the real variance based on the spectral analysis 

method is expressed as: 
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To estimate the spectral density, the periodogram 

based on the Fourier transformation of the discrete time 

domain data ( )lQ  is used as: 
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where 
2

k

active

k

L


   is the k-th Fourier frequency. 

Referring to Ref. [9], the periodogram at non-zero 

frequency is an asymptotically unbiased estimator of the 

spectral density as 
activeL  goes to infinity, while the 

variance is proportional to the square of the 

periodogram, which does not decrease as 
activeL  

increases. Furthermore, the periodogram at frequency 

zero is even biased. 

For the consistent estimation of the spectral density at 

frequency zero, the local average of the periodograms 

near frequency zero is used as: 
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where M is the number of the periodograms used to 

estimate the local average. 

Using the Taylor series analysis, Ref. [8] shows that 

the bias of  ˆ 0f  is approximated as: 
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while the variance of  ˆ 0f  is approximated as: 
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As M increases, the bias increases and the variance 

decreases. Thus, there is a trade-off between the bias 

and the variance of the real variance. The memory 

requirement for the spectral analysis method is M times 

larger than that for the conventional sample variance 

which neglects the inter-cycle covariance. 

 

4. Numerical Results 

 

The benchmark problem is one-dimensional, one-

group reactor problem, as show in Fig. 1. The cross 

section of artificial fuel material is shown in Table I. 

 

 
Figure 1 Configuration of benchmark problem. 

 

Table I Cross sections for benchmark problem 

Cross Sections Value Cross Sections Value 

t  0.50 cm-1 f  0.06 cm-1 

s * 0.40 cm-1   2.0 

c  0.04 cm-1 keff 1.2 

*Scattering is isotropic. 

 

For both the conventional MC and the MC/p-CMFD, 

1,000 history per cycle, 20 inactive cycles, 1,000 active 

cycles, and 50 independent batch runs are performed, 

where the flux tally bins are set as 1cm x 100. For the p-

CMFD feedback, five coarse mesh cells are used. 

Figure 2 shows the flux distributions averaged over 

50 independent batch runs with an error bar indicating 

the real standard deviation (SD). The real SD of the 

MC/p-CMFD becomes 2.88 times smaller in average, 

compared to that of the conventional MC. 

 

 
Figure 2 Flux distributions averaged over 50 independent 

batch runs, where error bar indicates real SD. 

 

Figure 3 shows the periodograms obtained from the 

conventional MC and the MC/p-CMFD at tally bins 1 (0 

~ 1 cm), 15 (14 ~ 15 cm), 30 (29 ~ 30 cm), 50 (49 ~ 50 

cm). The p-CMFD feedback reduces the periodogram 

near frequency zero and makes the periodogram flat 

over the frequency. 
 

 

 
Figure 3 Periodograms averaged over 50 independent batch 

runs, where error bar indicates sample standard deviation of 

periodogram. 
 

Figure 4 shows the real SD, apparent SD, and the 

SDs estimated by the spectral analysis method (spectral 

SDs) with M = 1, 5, 10, and 20 in the conventional MC, 

where the spectral SDs are averaged over the 50 

independent batch runs. Figure 5 shows the 

corresponding quantities for the MC/p-CMFD.  As M 

increases, the spectral SD underestimates the real SD in 

the conventional MC, while the accuracy of the spectral 

SD is almost maintained in the MC/p-CMFD. 
 

 
Figure 4 Comparisons of real SD, apparent SD, and spectral 

SDs (M= 1, 5, 10, and 20) in conventional MC. 
 

 
Figure 5 Comparisons of real SD, apparent SD, and spectral 

SDs (M= 1, 5, 10, and 20) in MC/p-CMFD. 
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Figures 5 and 6 compares the relative SD [%] of the 

spectral SDs, estimated by the 50 independent batch 

runs for different M (M = 1, 5, 10, and 20) in the 

conventional MC and the MC/p-CMFD, respectively. 

For both the conventional MC and the MC/p-CMFD, 

the relative SD of the spectral SD decreases, as M 

increases. For M = 20, the relative SD of the spectral 

SD in the conventional MC is around 18%, while that in 

the MC/p-CMFD is around 12%. 

 

 
Figure 6 Comparisons of relative SD [%] of spectral SD for 

different M (M = 1, 5, 10, and 20) in conventional MC. 

 

 
Figure 7 Comparisons of relative SD [%] of spectral SD for 

different M (M = 1, 5, 10, and 20) in MC/p-CMFD. 

 

5. Summary and Conclusions 

 

The spectral analysis method was applied to estimate 

the real variances of the local MC tallies in the MC/p-

CMFD. It was shown that the p-CMFD feedback not 

only reduces the real variance itself, but also makes it 

possible to reduce the variance of the spectral SD by 

averaging the periodogram near frequency zero without 

losing significant accuracy. 

In the time domain (cycle), the p-CMFD feedback 

efficiently accelerates the convergence of the FSDs by 

reducing slowly decaying error component, which is the 

low frequency error component in the frequency domain 

[10]. Thus, the periodogram near frequency zero is 

reduced and the periodogram becomes flat over the 

frequencies. Equation (11) explains that the flattened 

periodogram reduces the bias, which is proportional to 

 0f  . 

It should be also noted that the bias is inversely 

proportional to the active cycle length. For the accurate 

estimation of real variance by the spectral analysis 

method, a sufficient number of active cycles is required. 

As further studies, the cycle length control in terms of 

the accuracy of the spectral SD will be performed. Of 

course, a synergetic application of the p-CMFD 

feedback and the spectral analysis method will be 

investigated in the continuous-energy whole-core 

problem. Furthermore, the investigation of the 

appropriate filter for the spectral analysis method is also 

viable. 
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