Study on Chemical Vapor Deposition of Ultra High Temperature Ceramics Based on Prediction of Thermodynamic Equilibrium Phases

Daejong Kim*, Jangwon Han, Hyun-Geun Lee, Ji Yeon Park, Weon-Ju Kim

Korea Atomic Energy Research Institute, Nuclear Materials Development Div., 989-111Daedeok-daero, Yuseong-gu, Daejeon 305-353

*Corresponding author: dkim@kaeri.re.kr

1. Introduction

Ultra high temperature ceramics (UHTCs) such as ZrB_2 , HfB_2 , ZrC, HfC, and TaC have extremely high melting points above 3000K [1,2]. They have excellent resistance to chemical attack, corrosion, and mechanical/thermal stress. Also, some UHTCs show good neutron characteristics. For example, ZrC has low neutron absorption cross section while HfB_2 has high neutron absorption cross section. Therefore, they can be used as constituent coating layer of TRISO fuel particles and neutron shielding materials [3]. In this study, we calculated thermodynamic equilibrium phases in $HfCl_4$ - C_3H_6 - H_2 system and derived optimal deposition conditions. Based on the calculation we tried to deposit a single HfC phase at a low temperature of $1200^{\circ}C$.

2. Methods and Results

2.1 Thermal Equilibrium Calculation

We used the HSC Chemistry 9.0 software to calculate thermodynamic equilibrium phases in the $HfCl_4$ - C_3H_6 - H_2 system. Following equations shows the reactions in the $HfCl_4$ - C_3H_6 - H_2 system.

$$\begin{split} HfCI_4(g) + H_2(g) + 1/3C_3H_6(g) &= HfC(s) + 4HCI(g); \\ 1/3C_3H_6(g) \to C(s) + H_2(g) \\ HfCI_4(g) + 2H_2(g) \to Hf(s) + 4HCI(g) \\ C(s) + Hf(s) \to HfC(s) \end{split}$$

Fig. 1 shows the equilibrium phases depending on the temperature at 1200°C, 6.7 kPa. HfC begins to form at about 500°C and HfCl₄:C₃H₆:H₂ = 3:0.32:100. A near-single phase HfC forms above 1200°C, as shown in Fig. 1(a). Fig. 1(b) shows the C/HfC ratio in HfC-1 and HfC-2 deposition conditions. The amount of excess carbon decreases as H₂ increases.

Fig. 1. (a) Equilibrium phases and (b) C/HfC ratio in the HfCl4-C₃H₆-H₂ system [4].

2.2 Chemical Vapor Deposition of HfC

Deposition was performed at 1200°C and 6.7 kPa based on thermodynamic equilibrium calculation results. Table I shows the chemical vapor deposition conditions.

Table I: Deposition Conditions of HfC

Sample	Flow rate (sccm)			
designation	C ₃ H ₆	H ₂	Ar	HfCl ₄
HfC-1	10	3200	0	91
HfC-2	10	800	0	91

Fig. 2 shows the XRD results of HfC deposited at 1200°C. At the high ratio of $H_2/(HfCl_4+C_3H_6)$, a nearly single HfC phase was deposited, but a small amount of excess carbon was co-deposited in HfC at the lower ratio of $H_2/(HfCl_4+C_3H_6)$.

Fig. 2. X-ray diffraction peaks of hafnium carbides.

Fig. 3 shows the cross-sectional microstructure of the HfC coating layers of HfC-1 and HfC-2. HfC deposited in the HfC-1 condition contains many pores and the grain size is small. Also, HfC nanorods with a diameter of several hundred nanometers were grown. On the other hand, in the HfC-2 condition, HfC has a dense structure without pores, and the grain is coarse.

Fig. 3. Microstructures of HfC coatings: (a) HfC-1 and (b) HfC-2.

3. Conclusions

HfC was deposited at 1200° C by chemical vapor deposition from HfCl₄-C₃H₆-H₂ which was derived from thermodynamic calculation. a single HfC phase without excess carbon, was deposited at a high ratio of H₂/(HfCl₄+C₃H₆). However, a porous HfC coating layer was formed. On the other hand, dense HfC was

deposited at the low ratio of $H_2/(HfCl_4+C_3H_6)$ although it contains a small amount of excess in the HfC coating.

Acknowledgement

This work was supported by the National Research Foundation of Korea ((NRF) grant funded by the Korean Government (MSIP) (No. 2017M2A8A401742).

REFERENCES

[1] W. G. Fahrenholtz, G. E. Hilmas, Ultra-High Temperature Ceramics_Materials for Extreme Environments, Scripta Mater., Vol. 129, p. 94, 2017.

[2] A. Paul, D. D. Jayaseelan, S. Venugopal, E. Zapata-Solvas, J. Binner, B. Vaidhyanathan, A. Heaton, P. Brown, W. E. Lee, UHTC Composites for Hypersonic Applications, Amer. Ceram. Soc. Bulletin, Vol. 91, p. 22, 2012.

[3] W.E. Lee, M. Gilbert, S.T. Murphy, R.W. Grimes, Opportunities for Advanced Ceramics and Composites in the Nuclear Sector, J. Amer. Ceram. Soc., Vol. 96, p. 2005, 2013.
[4] D. Kim, H. Han, C. Park, H.-G. Lee, J.Y. Park, W.-J. Kim, Chemical Vapor Deposition of Dense Hafnium Carbide from HfCl4-C₃H₆-H₂ System for the Protection of Carbon Fibers, Adv. Eng. Mater., 2018, submitted.