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Equations 

Conclusions 

Introduction  
A sodium-cooled fast reactor (SFR) is a reactor that uses liquid sodium metal as a 
coolant. This coolant has higher thermal conductivity than the water in conventional 
light water reactors. The Peclet number is generally large and can be neglected in 
the coolant energy equation. Its effect, however, cannot arbitrarily be neglected for 
sodium under low-flow conditions. It is therefore necessary to examine the Peclet 
number. In the case of the STELLA-2 sodium loop experimental apparatus, the 
natural convection driving force would be reduced to 1/5, but the influence of the 
axial heat conduction is increased five times as the scale in the longitudinal 
direction is reduced to 1/5. Therefore, in order to realize the same physical 
phenomenon in the simulation experiment, it is necessary to assure that the thermal 
conduction phenomenon is reflected in the scaling or that it has negligible effect on 
the behavior of the entire system. 

 Exact solutions to a rectangular sodium loop with the axial heat 
conduction have been developed. When the height and diameter of 
the loop are scaled down at the same rate, the temperature 
distributions for different scale are coincident with each other. 

Fig.1. Schematic diagram of the closed loop. 

The circuit consists of two horizontal pipes and two vertical pipes. It originates from 
the beginning of the lower heated section, and it cools down in the upper section. The 
analysis is based on a one-dimensional approach. The space coordinate s runs 
around the loop. Fig.1 shows a schematic diagram of the loop used for analysis.  
One-dimensional single-phase energy equations with axial conductive heat transfer 
with rectangular closed loop geometry and incompressible flow are given as: 

Heater: 

Dimensionless mass flow rate, ω=1 in the steady-state condition and H=height of 
pipe, Lt=total length of loop. By applying the temperature conditions: θ3=heater inlet, 
θ4=heater outlet, θ1=cooler inlet, θ2=cooler outlet. 

The equations are non-dimensionalized by using the following dimensionless 
governing parameters. 

Fig. 2. Steady-state temperature distribution along the loop  
for different values of the Peclet number. 

Cooler:  

Pipes:  

Because the temperature slopes are the same at the outlet and inlet of the heater 
and cooler, four equations can be derived. From these four equations, four 
unknown temperatures: θ4, θ1, θ2, and θ3 can be solved. The Newton-Raphson 
method was used to solve them. Fig. 2 shows the temperature distribution along the 
loop for different values of the Peclet number. Fig. 3 and Fig. 4 show the 
temperature distribution for different values of the height and diameter. Fig. 5 shows 
the temperature distribution at different scales. From the figure, it can be seen that 
two temperature distributions at Pe = 0.1 are coincident with each other when the 
height and diameter are scaled down at the same rate. 

Fig. 5. Steady-state temperature distribution along the loop  
for different scales at Pe = 0.1. 
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The equations would be: 
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The non-dimensional groups are expressed as: 
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The analytical solutions of temperature distribution in the steady-state condition along 
the loop are expressed as: 

Where, 

Heater: 

Cooler:  

Hot Pipe:  
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Fig. 3. Steady-state temperature distribution 
along the loop for different values of the 
height. 

Fig. 4. Steady-state temperature distribution 
along the loop for different values of the 
diameter. 

Table 1: Parameter of loop. 
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