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1. Introduction 

 

A hexagonal nodal method based on the analytic 

function expansion nodal (AFEN) method [2-7] is being 

developed and implemented into the CAPP code [1] to 

improve the computational efficiency of analyzing the 

prismatic high temperature gas cooled reactor cores. The 

AFEN version applied here is a refined one by adding the 

analytical basis functions combined with the transverse-

direction linear functions into the intranodal flux expansion 

[5]. The flux moments which are defined by the weighted 

average fluxes at the interface are used as nodal unknowns 

corresponding to the added basis functions. A linear 

function or a step function in parallel to the interface 

direction is used as a weighting function. On the other hand, 

the corner point fluxes are no longer used as nodal 

unknowns, since it is expected that sufficient accuracy can 

be achieved even without them. According to Reference 5, 

the refined AFEN method even without corner point fluxes 

provides much better accuracy than the original AFEN 

method. 

In addition, the nodal method employs a response matrix 

method that uses the interface partial currents as nodal 

unknowns instead of the interface fluxes used in the original 

AFEN method. The response matrix method updates the 

outgoing partial currents of each node at each inner iteration 

step by imposing the incoming partial current boundary 

conditions on the interfaces of the node. Therefore, there is 

an advantage that the domain in calculation of the nodal 

unknowns and their coefficients matrixes can be confined 

within the node independently of its neighbor nodes. 

Finally, the method adopts a computational acceleration 

method utilizing a two-factor coarse-mesh finite difference 

(CMFD) nonlinear iteration as in Reference 6. However, 

unlike Reference 6, which solves a two-node problem, here 

we solve a single-node problem and determine the interface 

non-linear correction factors. This can be justified it fits 

more to the concept of the response matrix which can be 

defined as the response (i.e., outgoing partial currents) of a 

single node to the input (i.e., incoming partial currents). 

Further evaluation is required for general reasoning that the 

stability of the overall calculation is reduced by utilizing the 

single node problem instead of the two node problem. 

This is the initial step in implementing this method into the 

CAPP code. This paper reports the preliminary results of 

applying this method to a two-dimensional benchmark 

problem to evaluate its applicability to practical core 

analysis. 

 

2. Methodology 

2.1 Single-Node Nonlinear FDM Response Matrix 

2.1.1  Nonlinear FDM Response Matrix 

 

Reference 6 describes a nonlinear FDM iteration 

scheme in a rectangular node. Extending it to a 

hexagonal node begins by defining s
gD

~ that is the 

nonlinear FDM correction factor at interface s of a node 

shown in Fig. 1 as follows: 
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where
gD is the diffusion coefficient, s

g
and s

gJ the 

heterogeneous interface flux and the interface current, 

respectively, and 
g

 

is the node average flux. 

 
Fig. 1.  Interface s of a node 

Noting that the heterogeneous interface flux and the 

interface current are given by 
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respectively. Here, sout
gP ,  and sin

gP , are the heterogeneous 

partial current going out from node n across interface s 

and the heterogeneous partial current coming in to node 

n, respectively.  

Then, the outgoing partial current at interface s can 

be expressed in terms of the ingoing partial current at 

the same interface, as follows: 
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This is the so-called FDM response matrix, which 

provides an iterative process to solve the whole entire 

core eigenvalue problem assuming that the nonlinear 

FDM correction factor in this equation is known. 

The correction factor is determined so that the 

solution of this nonlinear FDM is mathematically 

equivalent to the solution of the AFEN method. This is 

done by solving the single node problem by the AFEN 

method applying the procedure described in section 2.2. 

Once the AFEN solution is obtained, the correction 

factor is updated using the following equation: 
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In solving the single node problem by AFEN, the 

currents and the current moments at the six interfaces 
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are needed as the boundary conditions. Among them, 

the current boundary condition can be obtained from the 

partial currents converged by the nonlinear FDM 

iteration described above. However, an additional 

procedure is needed to obtain the current moments to 

provide the boundary conditions to the single node 

problem. 

 

2.1.2  Interface Current Moment Scheme 

 

We define the relationship between the current 

moment and the flux moment at the interface to be 

similar to the relationship between current and flux in 

Eq. (1). 
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where 
gD  is again the diffusion coefficient and the 

others are the corresponding moment shadows to the 

relationship between flux and current. 

Since the flux moment is defined only at the interface, 

it does not have its average value averaged over the 

node volume. For convenience, we define this value as 

the arithmetic mean of the flux moments at six 

interfaces.  
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The correction factor for the current moment is also 

obtained from the AFEN solution of the single node 

problem utilizing the following equation: 
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If the partial current moment is defined to have a 

similar meaning to the partial current, it is also 

continuous across a interface and still satisfies the 

analogous relations to Eqs. (2) and (3). 
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Finally, an iterative process based on another 

response matrix is obtained to yield the interface partial 

current moments. 
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This iteration process involves a single inner iteration 

because it contains only the interface partial current 

moments as unknowns thanks to Eq. (7), Since this 

iteration is completely decoupled from the nonlinear 

FDM iteration given in Eq. (4), it can be done after the 

nonlinear FDM iteration is complete. This provides the 

additional advantage that the correction factors used in 

the two iterations can be stored sequentially in the same 

memory. 

Alternatively to such an explicit scheme, an implicit 

nonlinear FDM schemes, where Eq. (1) and Eq. (6) are 

coupled with each other, can also be considered, for 

example: 
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The numerical performance of this explicit scheme 

will be evaluated the following study. 

 

2.2   AFEN Solution of Single-Node Problem [5] 

2.2.1 Intranodal Flux Expansion 

 

Solving the single node problem with interface 

current and current moment boundary conditions by the 

AFEN methods starts from expending the intranodal 

flux distribution into the analytic basis functions with 

and without transverse-direction linear functions. 
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and D  and   are the diffusion coefficient and 

crosssection matrixes, respectively. Here, (x, y), (u,v) 

and (p,q) are the three coordinates in Fig. 2 introduced 

for convenience.  

 
Fig. 2. Coordinate systems and Nodal Unkowns 

 

Note that this flux expansion has twelve terms with 

one coefficient each and all of them completely satisfy 

the diffusion equation for the node. Of course, both the 

basis functions and the coefficients of this expansion are 

square matrices with the number of energy groups as its 

order. However, thanks to the matrix function theory, 

they can be treated like scalar as long as they are 

functions of  .[8,9] 

The average flux of the node is defined from this flux 

expansion as follows. 
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The interface fluxes and the flux moments e.g., at the 

x1 interface are respectively defined by 
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respectively. Here, w(y) is the weighting two types of 

w(y), i.e., the step function and the linear function of y 

are used as the weighting function. 
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If the step function is used, it is equivalent to the case 

where an interface is cut in half and the continuous 

condition of flux and current is applied for each half of 

the interface. 

Strictly speaking, when applying equivalence theory, 

the interface fluxes and moments in Fig. 2 are different 

from those for the nonlinear FDM scheme shown in Fig. 

1: The former are homogeneous ones and the latter are 

heterogeneous ones. However, for simplicity, we treat 

these two as the same kind here. In implementing, of 

course, the discontinuity factors were involved. 

Further, the interface current and the current moment 

at the example interface are consistently defined by 
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2.2.2  AFEN Solution of Single-Node Problem 

 

Solving the single node problem in Fig. 2 to obtain 

the intranodal flux distribution means expressing 12 

coefficients of the flux expansion Eq. (14) in terms of 6 

interface currents and 6 interface current moments. This 

problem seems to involve inversing a 12x12 matrix. 

However, the decoupling transformation of Reference 5 

simplifies it to a problem of inversing several smaller 

matrixes. 

This transformation transforms both the flux 

expansion coefficients and the nodal unknowns. First, 

the nodal unknowns are transformed into the even and 

the odd forms e,g., in the x-direction: 
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Applying symmetric thinking, the even and the odd 

forms of the interface currents and current moments are 

defined as follows: 
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,respectively. 

Now, the coefficients of the expansion flux and the 

nodal unknowns are transformed once again as shown 

below. 
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where coefficient letter C is A or B, interface index k is 

0 or 1 and even-odd index s is e or o. 

Expressing the transformed unknowns in terms of the 

transformed expansion coefficients, we can realize that 

the original 12x12 matrix equation is decoupled with 

four 2x2 matrix equations and four scalar equations. In 

particular, two of the four 2x2 matrixes are in the 

relationship of similarity transformation to the other two. 

Therefore, solving a single-node problem simply 

involves finding the inverses of two 2x2 matrixes and 

four scalars, for example: 
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where M and T are 2x2 matrixes with elements of 

 matrix functions. 

By eliminating the coefficient vector, the interface 

fluxes and flux moments can be expressed in terms of 

the interface currents and current moments, which are 

boundary conditions e.g., as follows: 
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As is known, the inverse of M is singular when one of 

the eigenvalues of the crosssection matrix is very small. 

This singularity is removed in the manner described in 

Reference 5. 

Since all the transformations so far are linear, their 

inverse transformations are also linear. Therefore, an 

original nodal unknown as e.g., in Eq. (18) is expressed 

as a linear combination of transformed unknowns as e.g., 

in Eq. (28), and vice versa. 

Once the interface fluxes and flux moments are 

calculated from the interface currents and current 

moments resulting from the nonlinear FDM iteration 

with Eq. (4), the nonlinear FDM correction factors to be 

used in the nonlinear FDM iteration are calculated in 

turn using Eqs. (5) and (8). 

 

2.2.3 RGB Sweeping Scheme 

 

As described above, when the response matrix 

method is applied, both the single-node AFEN 

calculation and the nonlinear FDM response calculation 

are performed only within a single node regardless of 

neighboring nodes. Therefore, these calculations are 

carried out by sequentially moving from one node to 

another. In this case, it is advantageous to sweep the 

nodes by dividing them into red (R), green (G), and blue 

(B) nodes as shown in Fig. 3, like checkerboard 

sweeping for a rectangular node core. 

 
Fig. 3. RGB sweeping scheme 
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First of all, this kind of iteration schemes is known to 

be good in convergence and stability due to geometrical 

balance. In addition, the memory required is saved by 

storing inputs of the response calculation, i.e., incoming 

partial currents and outputs, i.e., outgoing partial 

currents in the same storage. This is because the 

outgoing partial currents resulting from previous two 

other types of node calculations automatically become 

incoming partial currents for the third kind of node 

calculations. 

 

3. Numerical Results and Discussion 

 

In order to verify the nodal method developed in this 

study, we solved several benchmark problems including 

a mini core problem which was derived from VVER-

440 benchmark problem [5].  However, the results are 

unsatisfactory in terms of acceleration performance. In 

some cases, it took more computation time than original 

AFEN, or even failed to converge. The cause of 

convergence degradation may be that it is based on a 

one-node problem that is less stable than a two-node 

problem. Or it may be due to the model of the interface 

partial current moment given by Eq. (11).  

The results of the mini core benchmark is shown in 

Fig.4 to verify that the proposed nonlinear FDM-based 

response matrix method is mathematically equivalent to 

the original refined AFEN. As shown in the figure, the 

two results are de facto identical within the number of 

meaningful digits of main output. It is not appropriate to 

present the computation time for the mini core at this 

stage. The acceleration performance of the proposed 

scheme will be evaluated comprehensively after 

significant efforts are made to improve convergence, 

such as using a two-node problem instead of the one-

node problem or using the implicit model of the partial 

current moment presented in Eq.  (12) and (13). 

 

 
Fig. 4. Results of the mini core problem (1/6 core) 

 

4. Conclusions 

 

In order to improve efficiency of the CAPP code in 

the analysis of the HTGR core, a nonlinear FDM-based 

response matrix method in the hexagonal geometry has 

been developed in a manner that it is equivalent to the 

refined AFEN method. In the nodal method, the corner 

point fluxes are no longer nodal unknowns, but the flux 

moments which are defined by the weighted average 

fluxes at the interface take the role of nodal unknowns.  

 In addition, the method adopts a two-factor coarse-

mesh finite difference (CMFD) nonlinear iteration as in 

Reference 6. It solves the single node problem by the 

AFEN method to determine the interface nonlinearity 

correction factors instead of the two-node problem as 

utilized in Reference 6. 

This method was tested against several benchmark 

problems and verified that it could provide the 

equivalent results to the original refined AFEN method. 

However it failed to show computational acceleration 

performance due to possible defects in the one-node 

problem or the partial current moment model. This is 

the initial step of porting this method to the CAPP code. 

The method will be improved with efforts such as 

adopting a two-node problem instead of the one-node 

problem or using the implicit model of the partial 

current moment. 
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