

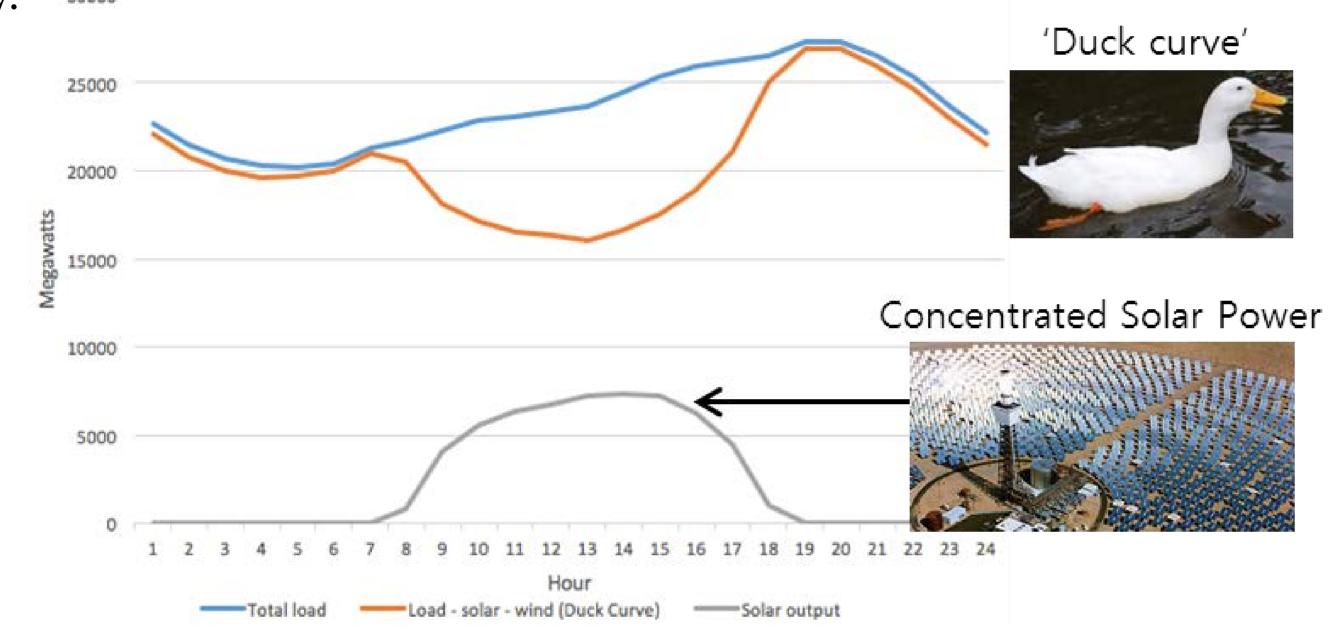
Preliminary study of thermal energy storage integration with nuclear power plant for flexible operation

Seungjoon Baik^a, Jeong Ik Lee^{a*}

^a Dept. of Nuclear & Quantum Engineering, KAIST, 373-1, Guseong-dong, Yuseong-gu, Daejeon, 305-701, Republic of Korea **Corresponding author: jeongiklee@kaist.ac.kr*

Introduction

• As the utilization of renewable energy is increased, the influence on the electric gird from the intermittency of renewable energy (e.g. wind turbine, solar photovoltaic (PV), concentrated solar power (CSP)...) has become an issue in the recent energy market.


As shown in the figure, the supply of electricity over time (orange) is shifting from the conventional supply curve (blue) due to the characteristics of the solar energy production (gray). This phenomenon is known as 'duck curve' which is mainly found in regions which have substantial contribution of energy from photo voltaic (PV) or concentrated solar power (CSP) power (e.g. Germany, France, Spain, and California). In this regard, existing PV power requires to store electric energy in the battery system while CSP systems requires thermal energy storages. Thus, with the further development of renewable energy technologies and increased capacity, it is expected that appropriate load following technology should be incorporate for future nuclear power plants to share the energy production share.

Thermal energy	ergy storage (TES)		
Energy Storage-	T Thermal Energy Storage		
	Electric Energy Storage (Batt	teries)	
	Mechanical Energy Storage ((Flywheels)	
	Hydro Energy Storage (Wate	r reservoir)	
	Compressed air Energy Stora	age	
	L Hydrogen fuel cell with Electr	olyzer	,
Sensible Heat		Maturity	,
Latent Heat	ⁱ Liquid Phase change materi	ial	1
- Thermochemical		Energy Density	
	0		

Material	Water	Ther- minol66	Solar salt	Rock
Material	@100°C	@300 °C	@300℃	@500°C
Density [kg/m³]	959	817	1900	2480
Specific heat [kJ/kg]	4.21	2.31	1.49	0.84
Thermal conductivity [W/mK]	0.677	0.096	0.45	2-7
Viscosity [mPas]	0.283	44	1.3-1.6	-
Melting Temperature [℃]	0	-3	220	-
Maximum Temperature [℃]	100	350	700	1650
Volume Specific heat capacity [kJ/m ³]	4037	1887	2831	2083
Cost [US\$/kWh]	-	43	3-12	-

▲ Category of energy storage types & Material selection of sensible heat

In this paper, load shifting of nuclear power by using the thermal energy storage (TES) system is studied for effective and stable utilization of nuclear energy. 30000

▲ Hourly electric load of California on Oct., 2016

storage and their thermodynamic properties

Results

The Andasol CSP Station is referred for practical size comparison, which was constructed in Spain in 2009. The Andasol station is a parabolic trough type CSP consisting of three 50MWe steam turbines with three pairs of molten salt TES. One pair of them is shown in the figure below.

	Materials	Solar salt [And- asol]	Water	Ther- minol 66	Nolar	Rock
	Size [m]		36	5×14 (D	×H)	
	# of pairs	3	1	2	1.5	1.8
	Inventory [tons/storage]	28000	13000	12000	24000	35000
	Hours of use	7.5			2	
D: 36n H: 14m	Temperature difference [℃]	90			53 (59%)	
	Capacity [MWh]	1050			800	

▲ 150MW scale Andasol CSP station in Spain & Preliminary design result of suggested system

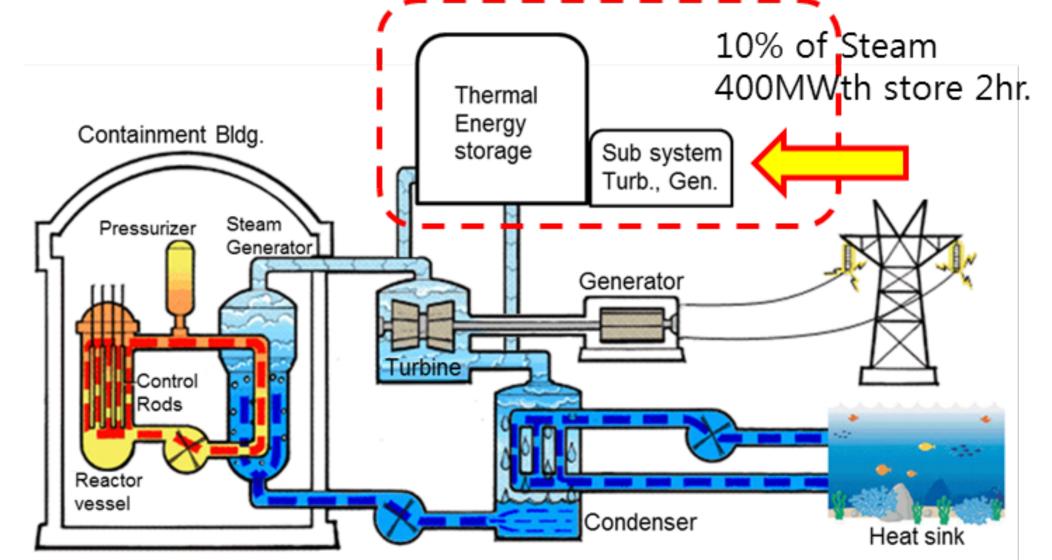
The results are 800MWh thermal energy storage depending on heat

Nuclear power plant & Thermal energy storage

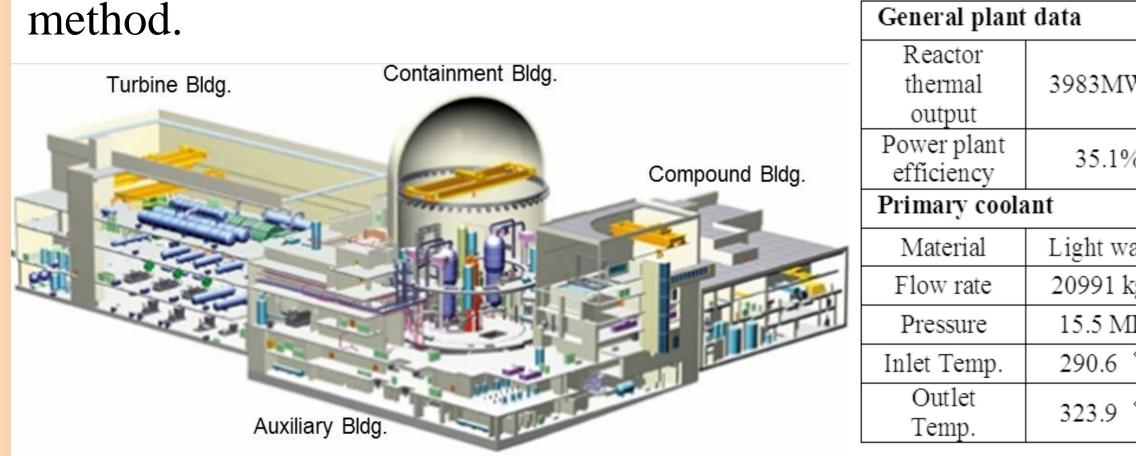
Load-following operation with nuclear power plants

- According to European Utilities Requirements (EUR), modern nuclear power plant must at least be capable of daily load cycling operation between 50% and 100% of its rated power with a rate of electricity output change 3-5% of rated power per minute.
- According to OECD-NEA report, following physical effects are needed to be considered for nuclear reactor power changes :
 - (1) Moderator effect
 - (2) Doppler effect
 - (3) Power distribution change in the core
 - (4) Xenon effect
 - (5) Fuel burn up

For the long term operation, not only the physical effects but also the mechanical issues need to be considered for the control rod drive mechanism and cyclic thermal fatigue of the components. Due to these difficulties, nuclear power plants are producing electricity as a base-load operation in most of electric markets.


storage mediums. By using the same size of storage tank, different materials can be utilized to store 2 hours of thermal output. Due to the difference of thermal capacity, each storage tank shows different size.

In water storage case, at least 7MPa is needed to store 285° C of steam in state of water. This requires a large pressure vessel, which is not a proper choice in economical view.


Conclusions and Further Works

In this paper, load shifting of nuclear power plant through utilizing the thermal energy storage system is studied for effective and stable utilization of nuclear energy with renewable energy.

To consider 2 hours of 10% load shifting operation of APR1400, preliminary design result of TES is suggested. By comparing the size of TES with existing Andasol CSP station (1050MWh) the technical feasibility of TES integration into conventional nuclear power plant is studied.

■ Nuclear power plant – APR1400, developed in 2002 The APR1400 is also designed to allow part-load operation to meet the design requirements, but there are additional considerations for nuclear reactor power changes. However it is not good for economy in current

General plant data				
Reactor thermal output	3983MWth	Power plant output	1400MWe	
Power plant efficiency	35.1%	Plant design life	60 years	
Primary coolant		Secondary coolant X 2		
Material	Light water	Material	Light water	
Flow rate	20991 kg/s	Flow rate	1130.8 kg/s	
Pressure	15.5 MPa	Pressure	6.9 MPa	
Inlet Temp.	290.6 °C	Inlet Temp.	232.2 °C	
Outlet Temp.	323.9 °C	Outlet Temp.	285 °C	

▲ A cut-away of a plant APR1400 [Doosan] & Technical specifications

A schematic diagram of suggested TES integrated nuclear power plant system For the further works, economic analysis of storage medium and proper

power conversion technology will be studied. The authors believe that carbon dioxide based mixture power cycle can be suitable because it is small and efficient systems in this temperature range. Also the exergy analysis will be conducted to show the optimized TES-NPP matching system.

Transactions of the Korean Nuclear Society Autumn Meeting *Yeosu, Korea, October 25-26, 2018*

