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1. Introduction 
 

Many efforts have been made to improve the well-
posedness of one-dimensional two-fluid equations. 
Examples include numerical/artificial/material viscosity, 
interfacial pressure, virtual mass, gravity effect, surface 
tension, etc. However, none is perfect in terms of 
physics; each model has its own drawback or is 
applicable to the limited flow patterns. 

[1] investigated the numerical stability of two-fluid 
equations with material viscous terms. While the 
inclusion of the viscosity rendered the governing 
differential equations well-posed, no obvious 
improvement in numerical stability was found. The 
reason is the material viscosity terms are small. 
Recently, [2,3] demonstrated the improved well-
posedness by adding the second-derivative terms in the 
mass and momentum equations. In particular, they 
considered turbulent viscous terms and showed 
excellent improvement of well-posedness. However, 
the problem is that the mass is not strictly conserved 
since the mass source terms are not zero. 

For this reason, the present study incorporates the 
turbulent viscous terms only into the momentum 
equations of the SPACE code. Two standard problems 
are simulated. 

 
2. Theory 

 
2.1 Governing equations 

 
For adiabatic, incompressible, and one-dimensional 

flows, the two-fluid mass equations are 
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The two-fluid momentum equations are given by 
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The last terms in Eqs. (3) and (4) originate from the 
material and turbulence viscosities. eff

g  is the sum of 

the material and turbulence viscosities for the gas phase. 
The same goes to the liquid phase. In general, the last 
terms are neglected on the basis that the axial 
component of the shear stress is negligible compared to 

the inherent numerical viscosity. However, for unstable 
two-fluid models these terms are of central importance, 
especially flor convergence analyses. 

The last two terms in Eqs. (3) and (4) may seem 
similar to the artificial viscosity terms in RELAP5[4]. 
However, those two terms are proportional to the sum 
of the material and turbulence viscosities, while the 
artificial viscosities in RELAP5 are simply relative to 
the phasic densities. 
 
2.2 Stability analysis 

 
Equations (1)~(4) can be written in the following 

matrix form: 
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According to the stability analysis, the following 
relation must be satisfied so as the solution to be non-
trivial. 

 2| | 0k ik   A B C .  (9) 

Therefore, one obtains the growth rate as follows: 
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Im[ ] takes the imaginary part of the complex growth 

rate  . In deriving that result, / /eff eff
g g l l       

has been assumed. For 0  , Eq. (10) goes to the 
existing result: 
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This implies that the equation system is unstable for all 
wavenumbers. However, for 0  , Im[ ]  is positive 

but it goes to zero as k  . In other words, the 
equation system is greatly stabilized for short waves. 
The present result differs from [1,2] in that the mass is 
strictly conserved. 

 
 

3. Results and discussion 
 

3.1 Water-faucet flow 
 
The water-faucet problem describes the free fall of a 

column of water and has been used as a standard 
benchmark problem for many two-fluid model codes. 

 
Fig. 1. Development of the water profile 

 
Initially, the liquid fraction and velocity are uniform as 

0 0.8l   and  0 10 m/slu  . The fluids are the water 

and air at 300 K under 1 atm. Neglecting all frictions, 
the theoretical distance, liquid velocity, and liquid 
fraction are 
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Figure 2 shows the SPACE code nodding. The total 
length of the pipe is 6.0 m and the diameter is 1 m. 
Figure 3 shows the liquid fraction profiles depending 
on N ,  the number of cells in the pipe. For small mesh 
sizes of N  500 and 950, unphysical profiles are 
predicted. This is because the existing two-fluid 
equation system is ill-posed; very unstable for short 
waves. Figure 4 shows the evolution of the liquid 
profile as a function of time. Overshoots are seen after 
about 0.3 s. 

 Figures 5 and 6 show the results when the turbulent 
viscosity terms are included in the momentum 
equations: 
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Equation (15) is based on the critical condition for 
separated flows.  One can see that overshoots are 
greatly suppressed in the discontinuous region; the 
liquid profiles are smooth across the discontinuous 
region. 

 
 

 
 

Fig. 2 SPACE code nodding for the water-faucet flow 
 

 
Fig. 3 Simulation result at 0.3t   s for 0   (water-faucet) 
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Fig. 4 Simulation results for 0   (water-faucet) 

 

 
Fig. 5 Simulation result at 0.3t   s for 0   (water-faucet) 
 

 
Fig. 6 Simulation results for 0   (water-faucet) 

 

Fig. 7 SPACE nodding for horizontal torus flow 

 
Fig. 8 Initial water fraction profile (torus) 

 

 
Fig. 9 Simulation results for 0    and 250N   (torus) 

 

 
Fig. 10 Simulation results for 0    and 250N  (torus) 
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3.2 Horizontal torus flow 
 
We now consider a horizontally-stratified flow. Figure 
7 show the SPACE code nodding for a horizontal pipe 
with the total length of 0.5 m and the diameter of 0.03 
m. The two ends are connected, i.e., torus geometry. 
Initially, the water velocity 1.0lu   m/s, the air 

velocity 13.0gu   m/s, and the pipe is filled with water 

as shown in Fig. 8. The temperature is 300 K and the 
pressure is 1 atm. At this condition, the flow is unstable 
in view of the Kelvin-Helmholtz instability. The critical 
relative velocity for instability is 11.3 m/s, but the 
initial relative velocity is 13 m/sg lu u  . 

Figure 9 shows the evolution of the liquid profile as a 
function of time when the turbulent viscosity is not 
included and the number of cells is 250. The flow is 
considerably unstable for the small mesh size and the 
calculation is terminated at t=0.10468 s. Figure 10 
shows the result when the turbulent viscosity is 
included. The evolution of the liquid profile is predicted 
smoothly. This excellent result is due to the turbulent 
viscosity terms. 

 
 

3. Conclusions 
 

One-dimensional turbulent viscosity terms were 
included in the two-fluid momentum equations. No 
treatment was applied to the mass equations. The water-
faucet and horizontal torus problems demonstrated the 
improvement of the well-posedness. The present 
approach differs from [1,2], in the mass conservation. 
At present, we are investigating the effect of the mass 
conservation modifying the mass source terms. 
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