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1. Introduction 

 
Since the early 1990’s, accelerator-driven subcritical 

systems (ADSs) [1] have been proposed and tested 
throughout the world by its merits of the high flexibility 
in nuclear fuel cycles as well as the unique safety 
concept. It is well known that the spatial distribution 
and energy spectrum of neutron flux calculated from 
the k-mode eigenvalue equation can be significantly 
different from those for a highly subcritical system with 
an external source. One of the related subjects is the 
point kinetics analysis for the initially subcritical 
system with kinetics parameters weighted by an 
adequate adjoint function.  

There have been several works [2-5] to develop a 
point kinetics model for the ADS analysis with varying 
the corresponding adjoint equation. In this paper, we 
develop Monte Carlo (MC) algorithms to estimate the 
kinetics parameters of the point kinetics equation (PKE) 
based on the inhomogeneous adjoint equation [6] in the 
MC fixed source calculations. The developed method is 
verified in an infinite homogeneous two-group problem 
by comparing its numerical results with analytic 
solutions. 

 
2. Methods 

 
For the completeness, the “exact” PKE [6] for the 

subcritical system is reviewed in Section 2.1 and its 
practical form and the MC algorithms for its kinetics 
parameters are derived in the following sub-sections. 

 
2.1 Exact PKE for ADS 

 
The time-dependent neutron transport equation and 

the delayed neutron precursor density equation can be 
expressed as 
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where  denotes the time-dependent angular flux, 

( , , , )E t r Ω . The subscripts p and d indicates operator 

or functions for prompt and delayed neutrons, 
respectively. i  is the decay constant of the delayed 

neutron precursors of group i. ( , , , )i E tc r Ω  is defined 

by   ( , , ) 4 ( , )di iE t C t r r  where di  and iC  are the 

energy spectrum and the precursor density, respectively, 
of the i-th group delayed neutrons. exts  is the external 

source density, ( , , , )ext E ts r Ω . Other notations follow 

the standard.  
For the further derivations, here, the fission 

production operator is defined by 

p di
i
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In this study, the solution of the following 
inhomogeneous adjoint equation is used as the adjoint 
function for the subcritical system: [6] 
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†
det det det   M F ,                   (7) 

where †
det  denotes the adjoint flux, † ( , , )det E r Ω , 

which is dependent on an arbitrary detector cross 
section function of ( , )det E r . The adjoint operators of 

†
0M  and †

0F , where the subscript “0” indicates the 

nominal state of the nuclear reactor, are defined as 
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By multiplying Eq. (1) by †

det  and Eq. (7) by , 

subtracting the resulting two equations, and integrating 
it over ( , , )Er Ω , one can obtain 
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where the angle bracket < > implies the inner product 
of two components in it over ( , , )Er Ω . Note that the 

property of the adjoint operators on the neutron flux, 
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i.e., † †

00
†, ,det det    MM , 

† †
00

†, ,det det    F F , and † ,det det det    , 

are used in Eq. (10). 
Now let us separate the angular flux  into an 

amplitude function P(t) and a shape function 
( , , , )E t r Ω  as [6] 

   , , , ( ) , , ,E t P t E t  r Ω r Ω ,          (11) 

where the shape function satisfies the normalization 
condition of 
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As in the derivation of the conventional PKE for the 

critical reactor [6], by inserting † , id t ie d  F  

† ,d it die   F  in the right side of Eq. (10) and using 

Eqs. (7) and (12), introductions of Eq. (11) into Eq. 
(10) yields the exact PKE for Eq. (1) as 
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  † †, ,i didet dett    F F ,           (16) 

†( ) ( ) ,dett I t    F ,                (17) 

†( ) , ( )deti i tcC t I  ,                  (18) 

†( ) , ( )detext extS t s I t  ,                (19) 

( ) ( )detq t I t ,                     (20) 
†( ) ,detI t   v ,                      (21) 

where (t) is named the generalized reactivity [15] 
using the weighting function of †

det  because the 

conventional reactivity [19] is defined with the adjoint 
flux obtained at the critical state. 

In the same manner to derive Eq. (13), one can obtain 
the PKE for Eq. (2) as 
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2.2 Practical PKE for ADS 

 
As the time-dependent shape function is 

approximated by the fundamental-mode solution of the 
k-mode eigenvalue equation in the critical reactor 
analysis, we apply the solution, 0 ,  to the steady-state 

neutron transport equation for the nominal state of the 
subcritical reactor with the external source: 

0 0 00 0 exts   M F .                    (23) 
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where 0exts  denotes the external source density at the 

nominal state, 0 ( , , )exts Er Ω . 

By using 0  as the shape function  and the 

operators at the nominal state, the integral parameters in 
the exact PKE can be approximated as 

† †
0 0 000( ) , ( ) , ( )det dett F           M M F F ,  

(26) 
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†
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0 0 0( ) detq t q I   ,                  (30) 
†

0 0( ) ,detI t I    v ,                (31) 

†
0 00,detF   F ,                       (32) 

 
2.3 Physical Meaning of the Adjoint Function 

 
In order to derive MC algorithms for calculations of 

the kinetics parameters of ,i eff , eff , and 0q  in the 

fixed source MC calculations, the adjoint flux, †
det , 

can be expressed in its Neumann Series expansion. We 
start this derivation from the value equation [7], or the 
adjoint equation of the outcoming collision density, 
written as 
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where T0 and C0 are the free flight kernel and the 
collision kernel, respectively. 

From Eq. (33), its solution, †
det , can be expressed as 

 0
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  K  .                   (36) 

By expanding  0

1†1


K  in its Taylor’s series [8], one 

can obtain the series expansion form of †
det  as 
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where †

det, j  represents the adjont response from the j-

th collision (j=0, 1, ···). Then, using Eqs. (34) and 

(35), †
det, j  can be expressed as 
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From Eqs. (37) and (38), one can clearly find that 
† ( , , )det E r Ω  means the expected detector response due 

to a unit neutron introduced at the phase space point 
( , , )Er Ω . Notice that q(t) in Eq. (13) becomes zero for  

the critical system because †
det , and thus I(t), are 

infinite from this physical meaning of †
det . 

 
2.4 MC Algorithms for Kinetics Parameter Estimation 

 
Using the physical meaning of the adjoint flux, †

det , 

one can estimate F0 from N external sources MC 
simulations as 
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where n and n  are the neutron source and its 
branching indices, respectively, where history branches 
may occur from the multiplicative reactions such as 
(n,2n) and (n,3n) as well as the fission reaction. j is the 
collision index. N is the number of neutron sources. 

( , )n nJ   and ( , )n n
fD   are the number of total collisions and 

a set containing collision indices at which fission 
reactions happen, respectively, in the n -th branch of 

source n. ( , )n n
jw  , ( , )n n j

det
 , and ( , )

0
n n j

t
  are the neutron 

weight, det , and 0t , respectively, at the j-th collision 

of branch n  of source n. Note that the term inside the 
parentheses in the right side of the first equality of Eq. 
(39) corresponds to the adjoint flux of a fission neutron 
generated from the j-th collision with its weight of 

( , )
1

n n
jw 
 . ( , )n n j

fm   indicates the number of fissions 

happened before the j-th collision in the n -th branch of 
source n. 

In the same manner to derive Eq. (39) for the 
†

00,det F  estimation, the numerator of ,i eff  in Eq. 

(28), †
0 0,det di F , can be calculated in the MC 

neutron tracking as 
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where ( , )n n j
dim   indicates the number of fissions from 

which delayed neutrons of the i-th precursor group are 
produced before the j-th collision of branch n  of 
source n. 

Lastly, I0 defined by Eq. (31) can be estimated by 
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(41) 
where ( , )n n

jl   and ( , )n n
j

v  is the track length and the 

neutron speed between the (j-1)-th and j-th collisions of 
branch n  of source n. In the second equality, the flight 

time, ( , )n n
jt 
 , defined by ( , ) ( , )n n n n

j jl  
  v is introduced. 

Then using 0F , †
0 0,det di F , and 0I  calculated by 

Eqs. (39), (40), and (41), ,i eff , eff , and 0q  defined by 

Eqs. (28), (29), and (30) can be calculated at the end of 
MC simulations. Note that 0det   of the numerator 

term of 0q  can be calculated by the standard scoring 

algorithm in the MC neutron simulations. 
 

3. Numerical Results 
 

The proposed algorithms have been implemented in 
McCARD [9]  and tested for a homogeneous infinite 
medium problem characterized by two-group cross-
sections given by Table I, with changing the differential 
scattering cross section. In the table, sg'g is the 
scattering cross section from energy group g to g'. In 
this study, s21 is set at 0.0092592, 0.0111894, 
0.0131162 or 0.0150397 corresponding to the infinite 
multiplication factor, kinf, of 0.6, 0.7, 0.8, and 0.9.  
 

Table I: Two-group cross sections for the infinite 
homogeneous problem 

Cross 
Section 

Fast Group 
(g=1) 

Thermal Group
(g=2) 

tg 0.5 1.3 

fg 0.001 0.090 

g 2.4 2.4 

sgg 0.48 1.09 

sg'g (g≠ g') variable 0.0019 

p,g 1.0 0.0 

d,g 0.5 0.5 

g
 d 0.006 0.006 

1/vg [s/cm] 2.2862610-10 1.2932910-6
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The McCARD fixed source calculations are 

performed using 10,000,000 neutron sources with fast-
energy group. In the table, SD stands for the standard 
deviation. From the table, we can see that the results of 
the proposed method agree well with the reference 
values, which are analytically calculated by Eqs. (27)-
(30), within 95% confidence intervals. 

 

Table II: Comparisons of kinetics parameter estimates with 
analytic solutions for the two-group problem 

kinf Para. Ref. 
McCARD 
(SD[%]) 

Rel. 
Err. 
[%] 

0.6 

eff 8.1634110-3 8.1841810-3 

(0.46) 
0.25

eff 8.2669010-6 8.2689810-6 

(0.04) 
0.03

q0 8.06429104 8.05811104 

(0.06) 
-0.08

0.7 

eff 7.4309510-3 7.4425010-3 

(0.38) 
0.16

eff 7.3456610-6 7.3433610-6 

(0.03) 
-0.03

q0 5.83435104 5.83163104 

(0.06) 
-0.05

0.8 

eff 6.8816010-3 6.9068710-3 

(0.34) 
0.37

eff 6.5994110-6 6.5994310-6 

(0.03) 
0.00

q0 3.78822104 3.78846104 

(0.08) 
0.01

0.9 

eff 6.4543310-3 6.4959710-3 

(0.35) 
0.65

eff 5.9862510-6 5.9832610-6 

(0.03) 
-0.05

q0 1.85611104 1.85744104 

(0.11) 
0.07

 
4. Conclusions and Future Works 

 
We have developed a MC method to calculate the 

kinetics parameters in the PKE for ADS, which requires 
the adjoint estimation in the MC fixed source 
calculations. The MC algorithms are derived based on 
the physical meaning of the adjoint function which is 
the solution to the inhomogeneous adjoint equation. 
The validity of the proposed method is demonstrated 
through a simple two-group problem by showing that 
the MC results agree very well with the analytic 
solutions. The proposed method will be applied for the 
derived PKE for ADS and validated in transient 
problems of ADS by comparing with experimental 
results.  
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