Validation of Pin-Wise Isotope Prediction Methodology by Comparing with Experimental Data

Min Jae Lee, Myung Hyun Kim*

Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, Korea, 17104 *mhkim@khu.ac.kr

1. Introduction

For a safe transportation and storage of spent nuclear it is required to evaluate criticality conservatively. However, burn-up credit is applied to cask design in order to remove unnecessarily high conservative assumptions. It is necessary to predict isotopic composition in a spent fuel for license evaluation for spent fuel cask design. Up to now, isotopic composition is predicted in an assembly-wise database. More detail evaluation of isotopic composition by pin-wise prediction may decrease uncertainty a lot for many applications; criticality evaluation, spent fuel recycling, cask shielding design, spent fuel repository design, etc. Accuracy of pin-wise isotopic concentration may play a critical role in adopting burn-up credit evaluation.

Therefore, checking up pin-wise isotope prediction methodology was performed through comparison with measurement data of OECD/NEA in this study. While objective error is under 5% for the major isotopes, more large errors are expected for some isotopes which has small amount and negligible impact to criticality.

2. Analysis Method

2.1 Pin-Wise Isotope Prediction Methodology

Pin-wise isotope prediction methodology is shown in Fig. 1 [1]. Pin-wise isotope prediction is conducted through three steps. Step 1 is to make Burnup-Isotope Number Density Data Base. In this step, data base is produced according to the type of fuel and fuel pin group(location). Step 2 is pin-wise burnup information. Step 3 is to predict isotope number density for each pin by interpolating.

Evaluation of two stages is needed for pin-wise isotope prediction methodology validation. First stage is to validate Burnup-Isotope Number Density Data Base. In this stage, reliability of data base produced by assembly calculation is validated. In second stage, prediction of pin burnup is evaluated. Pin-wise burnup prediction is performed through DeCART2D/MASTER. In this paper, validation of Burnup-Isotope Number Density Data Base is mentioned.

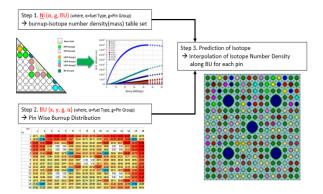


Fig. 1. Pin-Wise Isotope Prediction Methodology Scheme

2.2 OCED/NEA Measurement Data

Burnup-credit was applied for efficient spent fuel management [2,3]. code validation for adopting burn-up credit was performed by comparing calculated value with experimental data as licensing strategy. These measurement data were collected due to management of isotopic composition in spent fuel.

In this study, benchmark of three reactors is performed. These reactor measurement data are used to validate pinwise isotope prediction methodology. Measurement data are listed in Table I. three reactor is selected because of three reasons. First reason is sufficient fuel assembly information. Second one is a variety of isotope data. Last one is reliability of measurement data. Because each experiment is done by using different analytical way for spent fuel assay data, uncertainty is different. Therefore, experimental data with lower uncertainty were chosen.

Table I: OECD/NEA Measurement Data List

		1	<i>a</i> 1	
Reactor	Assembly	Pin	Sample	Burnup
Reactor	rissembry		Name	(GWd/tU)
	NT3G23	SF95	2	24.35
			3	35.42
			4	36.69
			5	30.4
		SF96	2	16.44
Takahama			3	28.2
Unit 3			4	28.91
Olit 5			5	24.19
	NT3G24	SF97	2	30.73
			3	42.16
			4	47.03
			5	47.25
			6	40.79

	D047	МКР	CC	37.12
		109	LL	27.35
Calvert Cliffs			Р	44.34
Unit 1		MLA	BB	26.62
	D101	098	JJ	18.68
			Р	33.17
	G13	N13	91E07	52.434
	17G	C5 F4	89G01	21.465
Ohi Unit 1&2			89G03	28.717
			89G08	30.172
			89G10	38.496
		013	89G05	25.137

2.3 Evaluation Procedure

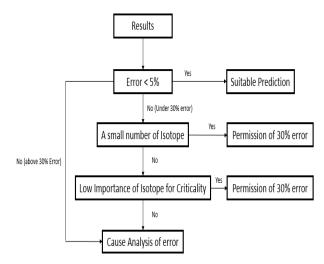


Fig. 2. Comparative analysis scheme

Fig. 2 shows comparative analysis scheme. Isotopic concentration [mg/gUi, milligram/gram Uranium initial] is selected as parameter and C/E ratio is used for comparison with experimental data.

$$C/E Ratio = \frac{Calculated Prediction}{Experimental Data}$$
(1)

Isotope under 5% error means to predict suitably. some isotopes are permitted up to 30% error through 2 step. In first step, number density in spent fuel is analyzed. A small number of isotope can be allowed up to 30% error. Unsatisfied isotope goes to second step. Second step is evaluation of importance for criticality. Although isotope concentration is large, impact for critical can be small because of low cross-section. Therefore, importance is evaluated through macroscopic XS like under equation. Isotope with low importance can be permitted up to 30% error.

$$\begin{pmatrix} Fissile = & \frac{\Sigma_{f,N^{j}}^{Asy}}{\Sigma_{asy}^{Asy}} \\ Absorber = & \frac{\Sigma_{a,N^{j}}^{Asy}}{\Sigma_{a}^{Asy}} \end{pmatrix}$$
(2)

3. Results

3.1 Takahama Unit 3

Results of takahama unit 3 is shown in Fig. 3 and Fig. 4. Isotope distribution along error band is listed in Table II. Error under 5% means to predict suitably. Evaluation for number density and importance is conducted for isotope above 5% error.



Fig. 3. C/E Ratio - Takahama Unit 3 (Actinide)

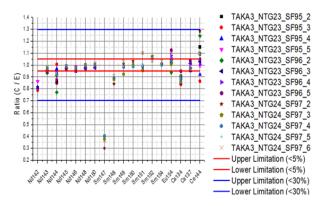


Fig. 4. C/E Riatio - Takahama Unit 3 (Fission Product)

Table II: Isotope List according to Relative Error

Relative Error	Isotope
Under 5%	²³⁵ U, ²³⁶ U, ²³⁸ U, ²³⁹ Pu, ²⁴⁰ Pu,
	²⁴¹ Pu, ²⁴² Pu, ¹⁴³ Nd, ¹⁴⁵ Nd, ¹⁴⁶ Nd,
	¹⁴⁸ Nd, ¹⁵⁰ Nd, ¹⁴⁹ Sm, ¹⁵⁰ Sm,
	¹⁵¹ Sm, ¹⁵² Sm, ¹⁵⁴ Sm, ¹³⁷ Cs
From 5% to 30%	²³⁴ U, ²³⁸ Pu, ²⁴¹ Am, ^{242m} Am,
	²⁴³ Am, ²⁴⁴ Cm, ²⁴⁵ Cm, ¹⁴² Nd,
	¹⁴⁴ Nd, ¹⁴⁸ Sm, ¹⁵⁴ Eu, ¹³⁴ Cs, ¹⁴⁴ Ce
Above 30%	²³⁷ Nd, ²⁴² Cm, ²⁴³ Cm, ¹⁴⁷ Sm,
	¹⁰⁶ Ru, ¹²⁵ Sb

Evaluation of number density was performed on 50GWd/tU burnup. Number density is shown in Table III. Except for ¹⁴⁴Nd and ¹⁴⁴Ce, isotopes have small number density. Therefore, these isotopes are accepted up to 30% error. However, there are much number density for ¹⁴⁴Nd and ¹⁴⁴Ce, so importance evaluation has to be done. Table IV shows importance for criticality.

while ¹⁴⁴Nd and ¹⁴⁴Ce have a large number of number density, importance is low because of low XS. Therefore, 30% error is permitted for ¹⁴⁴Nd and ¹⁴⁴Ce.

Table III: Fuel Pin Number Density - 50GWd/tU

r					
	Isotope	Number		Isotope	Number
	isotope	Density		isotope	Density
1	U238	2.1430E-02	21	Pu238	7.4531E-06
2	U235	1.8755E-04	22	Sm152	5.0241E-06
3	Pu239	1.4265E-04	23	U234	4.8103E-06
4	U236	1.3013E-04	24	Am243	4.2682E-06
5	Cs137	7.0714E-05	25	Sm147	3.8790E-06
6	Pu240	6.5680E-05	26	Cm244	1.9880E-06
7	Nd144	5.8388E-05	27	Sm154	1.9858E-06
8	Pu241	4.1129E-05	28	Eu154	1.5008E-06
9	Nd143	4.0688E-05	29	Nd142	1.3353E-06
10	Nd146	3.8602E-05	30	Am241	1.2836E-06
11	Nd145	3.5367E-05	31	Sb125	8.1856E-07
12	Nd148	2.0039E-05	32	Sm151	5.7244E-07
13	Pu242	1.9741E-05	33	Cm242	5.6097E-07
14	Np237	1.5468E-05	34	Sm149	1.4852E-07
15	Ce144	1.5419E-05	35	Cm245	1.3374E-07
16	Sm150	1.5346E-05	36	Am242m	2.9900E-08
17	Ru106	1.1559E-05	37	Cm243	1.9222E-08
18	Nd150	9.6805E-06	38	Cm246	1.4228E-08
19	Sm148	8.3964E-06			
20	Cs134	8.3225E-06			

Table IV: Importance for Criticality - 50GWd/tU

	Isotope	Importance		Isotope	Importance
1	U238	2.6333E-01	21	U234	1.0486E-03
2	Pu239	1.5645E-01	22	Cm244	4.5129E-04
3	U235	8.1254E-02	23	Nd144	2.7590E-04
4	Pu240	7.6283E-02	24	Cm245	2.3868E-04
5	Pu241	5.0495E-02	25	Am242m	2.2667E-04
6	Nd143	1.1440E-02	26	Nd148	1.4737E-04
7	U236	9.6123E-03	27	Sm148	1.3824E-04
8	Pu242	6.6572E-03	28	Nd146	9.6285E-05
9	Np237	6.2807E-03	29	Nd150	6.5580E-05
10	Sm149	6.2133E-03	30	Cm242	4.5848E-05
11	Sm152	5.1523E-03	31	Sm154	3.8387E-05
12	Sm151	4.3474E-03	32	Cs137	2.6230E-05
13	Eu154	3.8636E-03	33	Ce144	2.4606E-05
14	Nd145	3.6388E-03	34	Nd142	2.3695E-05
15	Am243	3.0888E-03	35	Sb125	2.1928E-05
16	Pu238	2.2487E-03	36	Cm243	2.1789E-05
17	Sm150	2.1295E-03	37	Ru106	1.2698E-05
18	Am241	1.6682E-03	38	Cm246	7.9081E-07
19	Cs134	1.2551E-03			
20	Sm147	1.1605E-03			

3.2 Calvert Cliffs Unit 1 and Ohi Unit 1&2

Calvert Cliffs Unit 1 and Ohi Unit 1&2 also apply same method for evaluation. Results of Calvert Cliffs and Ohi is shown in Fig. 5 and Fig. 6. ²³⁷Nd, ²⁴²Cm and ²⁴³Cm is matched well in Calvert Cliffs and Ohi reactor while error is large in Takahama reactor.

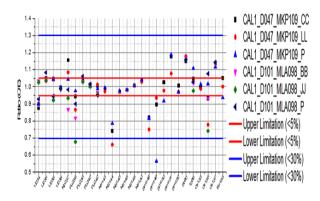


Fig. 5. C/E Ratio - Calvert Cliffs Unit 1

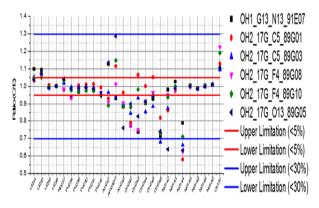


Fig. 6. C/E Ratio - Ohi Unit 1&2

However, there are overestimated isotopes. These isotopes are listed in Table V. Overestimated isotopes have short half-life. While calculated value is results when fuel assembly is discharged, measurement data is value after sufficient cooling was conducted. Because of cooling time, radioactive decay happens. For this reason, some isotopes are overestimated. Half-life is shown in Table VI.

Table V . Over Estimated Isotope

r								
	Calvert Cliffs Unit 1							
Isotop e	MKP 109_CC	MKP 109_L L	MKP 109_P	MLA 098_B B	MLA 098_JJ	MLA 098_P		
Pu241	1.347	1.372	1.323	1.391	1.380	1.413		
Eu155	2.618	2.607	2.422					
	Ohi Unit 1&2							
Isotop	N13_	C5_	C5_	F4_	F4_	013_		
e	91E07	89G01	89G03	89G10	89G08	89G05		
Eu154	1.727	1.545	1.635	1.887	1.894	1.604		
Sb125	8.020	7.497	7.100	8.758	8.876	7.600		
Cs134	5.419	5.128	4.864	5.485	5.280	4.897		
Ru106	36.036	31.48	28.65	34.14	31.25	28.58		
Kulto		8	7	4	5	9		
Ce144	109.99	88.01	86.15	94.21	81.85	81.80		
Ce144	6	2	7	6	8	6		

	Isotope	Half-life (yr)		Isotope	Half-life (yr)
1	Am242m	0.001829	12	Cs137	30.08
2	Cm242	0.446027	13	Pu238	87.7
3	Ce144	0.780575	14	Am241	432.6
4	Ru106	0.870685	15	Cm246	4706
5	Cs134	2.0652	16	Pu240	6561
6	Sb125	2.7586	17	Am243	7370
7	Eu155	4.753	18	Cm245	8423
8	Eu154	8.601	19	Pu239	24110
9	Pu241	14.29	20	Pu242	375000
10	Cm244	18.01	21	Np237	2144000
11	Cm243	29.1	22	U236	23420000

Table VI. Half Life of Isotope

4. Conclusions

In this study, validation of Burnup-Isotope Number Density Data Base was performed by comparing with measurement data. relative error is 5% for major isotopes and 30% for a small number of isotope which is not important for criticality. Also, cooling time must be considered when isotope with short half-life is predicted.

In this study, assembly average macroscopic XS is used when importance is evaluated. For detail information, calculation using ORIGEN or MCNP will be conducted. Also, validation of burnup prediction calculated by DeCART2D/MASTER is supposed to be performed.

Acknowledgement

This work was supported by KOREA HYDRO & NUCLEAR POWER CO., LTD (No. 2017-Tech-12)

REFERENCES

[1] Yun Seo Park and Myung Hyun Kim, "Multi-Cycle Analysis on Spent Fuel Re-utilization in PWR Reload Core Design", 2017 Transactions of the Korean Nuclear Society Spring Meeting, Jeju island, Korea, may 18-19, 2017.

[2] ALEJANO.C, et al., Spent Nuclear Fuel Assay Data for Isotopic Validation, NEA/NSC/WPNCS/DOC(2011)5, Nuclear Science Committee, Working party on Nuclear Criticality Safety(WPNCS), Expert Group on Assay Data of Spent Nuclear fuel(EGADSNF), OCDE/NEA, June, 2011.

[3] P.Ortego, et al., Evaluation Guide for the Evaluated Spent Fuel Nuclear Fuel Assay Data Base, NEA/NSC/R(2015)8, Nuclear Science Committee, Working party on Nuclear Criticality Safety(WPNCS), Expert Group on Assay Data of Spent Nuclear fuel(EGADSNF), OCDE/NEA, February, 2016.
[4] Yoshinori Nakahara, et al., Technical Development on burn-up Credit for Spent LWR Fuels, JAERI-Tech 2000-071(ORNL/TR-2001/01), OAK RIDGE National Laboratory, January, 2002.

[5] B.Roque, et al., International Comparison of a Depletion Calculation Benchmark on Fuel Cycle Issues, NEA/NSC/DOC(2013)1, Nuclear Science Committee, OCDE/NEA, January, 2013. [6] G.Radulescu, et al., SCALE 5.1 Predictions of PWR Spent Nuclear Fuel Isotopic Compositions, ORNL/TM-2010/44, OAK RIDGE National Laboratory, March, 2010.

[7] G.llas, et al., Analysis of Experimental Data for High Burnup PWR Spent Fuel Isotopic Validation-Calvert Cliffs, Takahama, and Three Mile Island Reactors, NUREG/CR-6968, ORNL/TM-2008/071, U.S.NRC, February, 2010.

[8] O.W.Hermann, et al., Validation of the SCALE System for PWR Spent Fuel Isotopic Composition Analyses, ORNL/TM-12667, OAK RIDGE National Laboratory, March, 1995.