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1. Introduction 

 
The evaluation of radiation shielding has been 

performed for the design and maintenance of facilities 

using radioactive sources (e.g., accelerator, radionuclide, 

and nuclear fuel). In this process, a considerable amount 

of numerical calculations are required to analyze the 

radiation flux and dose rate distribution around these 

facilities. For this reason, various computational codes 

and methods are introduced in the field of radiation 

shielding, and the most widely used methods can be 

classified into two main groups: Monte Carlo [1-3] and 

point kernel methods [4-6].  

When the specific source as a spherical volume that 

emits the radiations to be isotropically moved over the 

4π solid angle is placed in a simple structure, the 

evaluation of the radiation shielding can be easily 

conducted by introducing certain assumptions. In 

particular, if the size of the source volume is small in 

comparison with the distance from the radiation source 

to the detection point, the source can be assumed an 

equivalent point source. That is, this assumption ignoring 

the source volume can lead to a significant error for the 

radiation flux (dose) distribution near the radiation 

source. In this study, an approximate equation is defined 

to correct significant errors produced by employing a 

point source assumption, and spherical volume source 

without radiation shield is assumed, as shown in Figure 

1. 

 

 
Figure 1. Spherical Volume Source without Radiation 

Shielding 
 

2. Methods and Materials 

 

A spherical volume source of radius R emits 

isotropically SV particles per unit volume, and a detector 

is positioned at point P1, and the distance from the sphere 

center to the detection point is L. In this case, the 

differential uncollided flux (𝑑𝜙𝑢
𝑠𝑝ℎ

) of particles emitted 

in dx about x can be defined using the total uncollided 

flux for finite disc source as Eq.(1) [7], and thus the total 

uncollided flux (𝜙𝑢
𝑠𝑝ℎ

) at P1 becomes Eq. (2). Also, the 

total uncollided flux (𝜙𝑢
𝑝𝑛𝑡

) of equivalent point source 

considering the sphere volume can be simply defined as 

Eq. (3), and an approximate equation to correct the point 

source assumption is finally derived from those 

equations. In addition, the reactions between the emitted 

radiations and sphere source (i.e., self-shielding effect) 

are not considered to derive a simplified equation. 
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3. Results and Discussions 

 

A spherical volume source (60Co, R=10cm) was 

assumed to confirm the effect of correcting the point 

source assumption. The source emission is assumed to 

have a uniform strength of Sv (100 Bq/cm3), and the 

energies of two gamma-rays are 1.1732 MeV and 1.3324 

MeV, respectively. The gamma-ray flux distribution 

around the spherical volume source is analyzed using 

MCNP5-1.60 [8] and QAD-CGGP codes [4], and 

normalized fluxes are presented in Figure 2 and Table 1. 

As shown in the table, the results applied with the point 

source assumption have a maximum different ~30% in a 

radiation flux near the source, compared with the 

MCNP5 result. On the other hand, this difference is 

sharply reduced from ~30% up to ~11% by correcting the 

point source assumption. That is, the significant errors 

produced from a point source assumption can be reduced 

by applying the approximate equation considering the 

volume of radiation source.   
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Figure 2. Correction Before and After Gamma-ray Flux 

Normalized by MCNP5 Results 
 
Table 1. Point Source Assumption Correction Before and After 

Gamma-ray Flux 

r* 

[cm] 

QAD-CGGP 

MCNP5 
Before 

Correction 

Correction 

Factor 

After 

Correction 

11 5.51E+00 1.29E+00 7.09E+00 7.83E+00 

12 4.63E+00 1.21E+00 5.60E+00 6.27E+00 

13 3.94E+00 1.17E+00 4.59E+00 4.97E+00 

14 3.40E+00 1.13E+00 3.86E+00 3.97E+00 

15 2.96E+00 1.11E+00 3.29E+00 3.29E+00 

16 2.60E+00 1.10E+00 2.85E+00 2.85E+00 

17 2.31E+00 1.08E+00 2.50E+00 2.49E+00 

18 2.06E+00 1.07E+00 2.20E+00 2.20E+00 

19 1.85E+00 1.06E+00 1.96E+00 1.96E+00 

20 1.67E+00 1.06E+00 1.76E+00 1.76E+00 

30 7.40E-01 1.02E+00 7.58E-01 7.59E-01 

40 4.16E-01 1.01E+00 4.22E-01 4.22E-01 

50 2.66E-01 1.01E+00 2.69E-01 2.69E-01 

60 1.85E-01 1.01E+00 1.86E-01 1.87E-01 

r* is the distance from the center of a radiation source to the 

detection point 
 

3. Conclusions 

 

Some calculations were performed to quantitatively 

investigate the errors produced from a point source 

assumption, and an approximate equation was derived to 

correct the error. The QAD-CGGP known as a 

representative point kernel code was employed for a 

series of calculations, and the calculation results were 

compared with the reference data obtained from the 

MCNP5-1.60 code. The results applied with the point 

source assumption have a maximum different ~30% in a 

radiation flux near the source, compared with the 

MCNP5 result. By applying the approximate equation, 

the difference in the calculation results derived from 

MCNP5 and QAD-CGGP codes is sharply reduced from 

maximum ~30% up to maximum ~11%.  
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