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1. Introduction 

 

Zr-2.5wt%Nb alloy is used for pressure tube in a 

CANDU pressurized heavy water reactor. The pressure 

tube is an important structural component, which 

supports burning fuels and pressurized heavy water. 

During the operation, the creep deformation in the 

pressure tube occurs and affects the safety and the 

efficiency of the reactor. Due to the anisotropic physical 

properties of the hexagonal crystal structure of zirconium 

and strong texture introduced by manufacturing process, 

the pressure tube shows the highly anisotropic 

deformation trend depending on the state of stress.  

Actually thermal creep is less dominant than the 

irradiation creep during the operation because the stress 

state by the pressure of the heavy water is relatively low. 

However, when the defects such as a notch or volumetric 

flaw increase the stresses in the vicinity of them, the 

thermal creep deformation becomes important. Since 

dislocation glide is the main mechanism of the thermal 

creep of the tube [1], the physical model based on crystal 

plasticity is needed to properly predict the anisotropic 

deformation behavior. In this study, two physical models 

were used to describe the thermal creep behavior of the 

tube and they were compared. 

 

2. Modeling 

 

Visco-plastic self-consistent (VPSC) model and 

crystal plasticity finite element model (CPFEM) are 

governed by the following constitutive law for a single 

crystal: 

 

𝜀𝑖̇𝑗 = 𝛾̇0 ∑ 𝑚𝑖𝑗
𝛼 (

𝑚𝑘𝑙𝜎𝑘𝑙

𝜏0
𝛼 )

𝑛

𝛼   (1) 

 

where 𝜀𝑖̇𝑗  and σkl  are a strain rate tensor in a single 

crystal and the applied stress on the given crystal, 

respectively. 𝛾̇0  and 𝑛  are the reference strain rate 

constant for a normalization and the strain rate sensitivity 

exponent, respectively. 𝑚𝑖𝑗
𝛼  is the Schmid tensor for α 

slip system which is expressed by 
1

2
(𝑛𝑖

𝛼𝑏𝑗
𝛼 + 𝑛𝑗

𝛼𝑏𝑖
𝛼) 

where 𝑛𝛼 and 𝑏𝛼 are the slip normal and direction vector 

of α slip system. 𝜏0
𝛼 is the critical resolved shear stress 

(CRSS) for α slip system. 

 

2.1. VPSC model 

 

In the self-consistent model, it is assumed that a grain 

can be described with the uniform stress and strain states, 

and their constitutive relation can be linearized as the 

following equation, 

 

𝜀𝑖̇𝑗 = 𝑀𝑖𝑗𝑘𝑙
𝑐 𝜎𝑘𝑙 +  𝜀𝑖𝑗

0   (2) 

 

where 𝑀𝑖𝑗𝑘𝑙
𝑐  and 𝜀𝑖𝑗

0  are the compliance and the back-

extrapolated strain rate for a crystal. These values can be 

defined differently depending on what linearization 

method is used.  

The bulk polycrystal is approximated to the aggregate 

as a homogeneous equivalent medium (HEM) consisting 

of crystals and, their constitutive relation between overall 

strain rate and the applied overall stress can be written in 

the similar linear form with a single crystal law, 

 

𝐸̇𝑖𝑗 = 𝑀𝑖𝑗𝑘𝑙Σ𝑘𝑙 + 𝐸̇𝑖𝑗
0   (3) 

 

where 𝐸̇𝑖𝑗  and Σ𝑘𝑙  are the strain rate and the stress for 

polycrystal, respectively. 𝑀𝑖𝑗𝑘𝑙  and 𝐸̇𝑖𝑗
0  are the bulk 

compliance and the bulk back-extrapolation term.  

In order to relate each crystal and the HEM, a grain is 

regarded as an inclusion embedded in the HEM and the 

interaction between them is solved using the Eshelby 

theory, which gives the following interaction form, 

 

(𝜀𝑖̇𝑗 − 𝐸̇𝑖𝑗) = −𝑀̃𝑖𝑗𝑘𝑙(𝜎𝑘𝑙 − Σ𝑘𝑙)         (4) 

 

where 𝑀̃𝑖𝑗𝑘𝑙 is the interaction tensor defined as, 

 

𝑴̃ = (𝑰 − 𝑺)−𝟏𝑺𝑴  (5) 

 

where 𝑺 is the Eshelby tensor, which is a function of the 

shape of the grain and the bulk modulus. Using the above 

equations and the condition that the weighted averages 

of stresses and strain rates over the crystals has to 

coincide with the corresponding macroscopic magnitude 

provides the expression from which the bulk compliance 

can be calculated in a self-consistent iterative way. 

Complete equations and their detailed solutions can be 

found in [2].  

 

2.2. CPFEM 

 

CPFEM has more straightforward application than 

VPSC model. In contrast to VPSC model, defining 

linearization method, homogenization scheme, and 

interaction tensor is not necessary in CPFEM. FEM 

framework provides convenience for them. Of course, 

additional considerations are required such as the 

development of time integration procedure and the 
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calculation of Jacobian matrix, which are requirements 

of FE analysis. 

For the time integration procedure, the basic 

framework about kinematic relation should be taken 

account of. In the kinematic relation, the deformation 

gradient can be expressed by a multiplicative 

decomposition into elastic and plastic components as: 

 

𝑭 =  𝑭𝒆𝑭𝒑 where det 𝑭𝒆 > 0 𝑎𝑛𝑑 det 𝑭𝒑 = 𝟏   (6) 

 

where 𝑭𝒆 𝑎𝑛𝑑 𝑭𝒑 are deformation gradient tensor about 

the elastic deformation accounting the elastic stretching 

and the rigid-body rotation of crystal lattice and the 

incompressible plastic deformation due to dislocation 

slip, etc., respectively.  

Since stress is a function of not the plastic deformation 

but the elastic one, the second Piola-Kirchoff stress (S) 

can be expressed by the following simple linear form 

 

𝑺 =  ℂ𝒆: 𝑬𝒆        (7) 

 

where ℂ𝒆 and 𝑬𝒆 are the fourth-order anisotropic elastic 

tensor and the elastic Green-Lagrange strain tensor 

defined as 𝑬𝒆 =
𝟏

𝟐
(𝑭𝒆𝑻𝑭𝒆 − 𝑰), respectively.  

For FE analysis, the stress should be computed 

through decomposing the elastic deformation tensor and 

the plastic one. The change of the plastic deformation 

tensor with a finite time increment can be derived by the 

following equation concerning the evolution of plastic 

deformation  

 

𝑳𝒑 = 𝑭̇𝒑𝑭𝒑−𝟏 = ∑ 𝜸̇𝜶𝒎𝜶

𝜶

 

 

The right term is identical with the basic constitutive 

equation (1). With the parameters dealt in the equation 

(1), the time integration procedure can be developed, 

then, the stress can be calculated. 

Although the Jacobian matrix does not affect the 

accuracy of the final solution, for the convergence rate 

during FE analysis, the Jacobian matrix should be 

properly defined. The derivation of the matrix demands 

complex numerical consideration. More explanation 

about the Jacobian and more details about the CPFEM 

theory can be found in [3]. 

 

3. Thermal creep behavior 

 

For the application of the two model, we borrowed the 

data about thermal creep tests on Zr-2.5wt%Nb pressure 

tube from [1]. They performed uniaxial and bi-axial 

thermal creep tests at many different stress levels and 

temperatures. The steady-state creep rates were taken 

and they were compared with the creep rates calculated 

using the models.  

Figure 1 shows the axial steady-state creep rates as a 

function of the applied stress. Even though the same 

conditions of the applied stress and temperature were 

used, the scatter that cannot be ignored was found. The 

reason for the scatter is the variations in the 

microstructure and texture of the specimen. 

In the process of finding the model parameters, such 

variation is not specially considered. Instead of selecting 

some data that seem to have a consistent tendency, we do 

use all data including those having the same condition 

but different creep rates.  

 
Figure 1. The axial steady-state thermal creep rates of 

the Zr-2.5wt%Nb pressure tube as a function of the 

applied stress from [1] 

 
4. Finding model parameters 

 

To optimize the parameters of the models, the loop 

codes written in Python language 3.6 were developed. 

The goal of the codes is to find the parameters that 

introduce the minimum difference between the 

calculated creep rate and the experimentally obtained 

creep rate. For an efficient search process, the 

evolutionary strategy, which generate the next 

generation of the parameter based on the previous 

generation, was used. Figure 2 and 3 show the schematic 

flows of the codes for VPSC model and CPFEM, 

respectively. 
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Figure 2. The schematic code flow used for optimizing 

parameters in VPSC model. 

 

 
Figure 3. The schematic code flow used for optimizing 

parameters in CPFEM. 

 

 

5. Results 

 

After over 100 iterations, the optimized parameter sets 

for VPSC model and CPFEM were acquired with 

reasonable differences. In the both models, calculating a 

steady-state creep strain rate requires four model 

parameters: three critical resolved shear stresses (CRSSs) 

for basal, prismatic and pyramidal slip system and a 

reference shear strain rate. Other model parameters 

except them were fixed. We assumed that CRSSs do not 

change with changing temperature, instead, the reference 

shear strain rate does. Therefore, through the iterations, 

total 10 parameters (three CRSSs and the reference shear 

strain rates at 7 different temperatures) were found. 

Figure 4 (a) and (b) shows the obtained reference shear 

strain rates as a function of temperature for VPSC model 

and CPFEM, respectively. Although the absolute values 

from VPSC model are slightly higher than those from 

CPFEM, the tendencies found in the dependency on 

temperature are almost identical. The similarity is the 

predictable result when considering the same basic 

constitutive model of the dislocation slip mechanism. 

The other parameters, CRSSs, from both models also 

show quite similar values due to the same reason as the 

reference shear strain rate. 

The predicted steady-state creep strain rates by VPSC 

model and CPFEM using the optimized parameters are 

within an order of magnitude with measurements, which 

are quite satisfied predictions because the variation in the 

experimental data has the same order of deviation. There 

are minor differences between the results from both 

models, which can be attributed to the method how to 

expand the constitutive law from a single crystal to 

polycrystal. 

 

 
Figure 4. The obtained reference shear strain rate 

through the optimization code (dots) and the parabolic 

fitted line (red line) for (a) VPSC and (b) CPFEM. 

 

6. Conclusions 

 

In the study, the steady-state thermal creep strain rates 

of the Zr-2.5wt%Nb pressure tube were described using 

two crystal plasticity model: VPSC model and CPFEM. 

Through iterating calculations with the in-house 

optimization codes, the fitted parameters have been 

obtained. With the parameters, the both models well 

predicted the creep strain rates under very different stress 

states and temperatures. Although different bulk 

homogenization schemes are adopted to VPSC model 

and CPFEM, only minor difference were found between 

the obtained parameters and the predicted results from 

the models. The non-dramatic variation indicates the 

basic crystal constitutive law is more dominant factor 

than the homogenization scheme for predicting the 

thermal creep strain rates of the pressure tube. 
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